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Preface

The randomised controlled trial (RCT) has long been considered the
‘gold-standard’ method for establishing effectiveness in health care
research. Many hundreds of thousands of health care RCTs have been
published. The fiftieth anniversary of the 1948 RCT of streptomycin was
widely celebrated by health care researchers in 1998. However, one
wonders how many educational or social science researchers are aware
of the larger 1931 and 1932 randomised trials of an educational
intervention conducted by Walters? And if they had known would the
seventy-fifth anniversary, in 2007, of those trials have been a cause for
celebration? Relatively few RCTs have been undertaken in the wider social
sciences. Many methodological advances in the design of trials have
been undertaken in health care, which are directly applicable to other
areas. Whilst many social science research methods texts have been pub-
lished, little attention or detail is given to the design and conduct of the
RCT in such texts. In health sciences research several excellent texts
describe the RCT, usually from a statistical standpoint, which make
them less accessible to the non-statistician or general research methodol-
ogist. This book is an attempt to remedy this deficit. We avoid, as far as
possible, detailed statistical arguments or formulae. Instead we focus on
the importance of trial design.

Since the early descriptions of the RCT there has been a tremendous
amount of methodological work, mainly in health care trials. As health
trialists have widened their remit away from the placebo controlled
drug trial, methodological innovations have been developed to deal
with the threat of post-randomisation biases. In this book we
detail these threats and describe different trial designs that can as easily
be applied to the wider social sciences as they can be to health care tri-
als. Many published trials make elementary mistakes that undermine
their validity. By way of example we discuss how to avoid these
problems through proper design and thereby, hopefully, develop a
design that will produce reliable results. We think that there will be a
revived interest in the RCT across the social sciences as politicians and
policy-makers begin to crave evidence for ‘what works?” The most
reliable guide to providing evidence on what works is the RCT.
Other approaches, long over-used by researchers and practitioners, are
nearly always subject to inherent flaws, which can render their results

viii



Preface  ix

uninterpretable. In this book we describe the main justification for the
RCT, and details of how we should randomise, and information about
potential bias. We also look in detail at different trial designs, at how to
appraise trial quality and we outline the importance of economic analy-
sis alongside RCTs.
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Glossary of Terms

Active or on treatment analysis — An analytical method whereby only
those who comply with their assigned intervention are included in the
analysis. Non-compliers may be analysed in the control condition.
Method violates randomisation and can introduce bias.

Allocation concealment — This prevents foreknowledge of allocation of an
individual by the researcher, participant or practitioner. This is impor-
tant because random allocation can be undermined if participants are
chosen to be in a desired group.

Alternation — A non-random method of forming comparator groups,
whereby trial participants are alternately assigned to treatment or to act
as controls.

Attrition — Some participants are lost during the study and cannot be
included in the analysis. This is termed attrition.

Before and after (pre- and post-test) —- The weakest form of quantitative eval-
uation. Participants are measured at a point in time, given an intervention
and then re-measured. Any change is attributed to the intervention. Bias
is a strong possibility due to temporal and regression to the mean effects.

Bias — A term denoting that a known or unknown variable is or may be
responsible for an observed effect other than the intervention.

Blinding — This denotes that the researcher is masked or ‘blinded’ to the
identity of the group allocation of the participants when undertaking
post-tests. This prevents biased assessment. Sometimes participants are
also blinded to the true nature of the experiment.

Blocked randomisation — This method of randomisation prevents groups
becoming either numerically unbalanced or suffering from chance bias.
It does this by randomising in blocks (e.g., block of four). Thus, a block
of four can be: ABAB, AABB, BBAA, BABA, ABBA, BAAB. This means that
the study will be balanced, although the block size must be kept secret
to conceal the allocation sequence.

Case control study — A study where participants are identified with a spe-
cific outcome (cases) and then compared with a control group of partic-
ipants without the outcome.

xi



xii  Glossary of Terms

Campbell Collaboration — Inspired by the Cochrane Collaboration (see
below) but aims to synthesise controlled studies in education, crime and
justice and social welfare (www.campbellcollaboration.org/).

Cochrane Collaboration — A world-wide collaboration, the aim of which is
to collect and review all of the controlled trials in the health care field,
to inform clinicians and policy-makers (www.cochrane.org/).

Comprehensive cohort design — A study design whereby participants who do
not consent to be randomised, or cannot be randomised, are followed
up alongside the randomised groups.

Confidence intervals — A method of expressing sample uncertainty around
the estimate of treatment effect. They are usually 95 per cent intervals:
if an identical trial is conducted many times then 95 per cent of the tri-
als will have confidence intervals which contain the true estimate of
effect.

Confounders — A variable associated with cause and outcome; can mask a
true relationship between another variable and outcome.

CONSORT - Consolidated Standards for Reporting Trials is a descriptive
method adopted by many medical journals for publication of RCTs.

Cost-benefit analysis — An economic technique that measures both costs
and benefits in monetary terms. If costs are lower than benefits then the
intervention should be adopted.

Cost-effectiveness analysis — An economic method that measures costs in
monetary terms but measures benefits in ‘natural’ units. When compar-
ing two mutually exclusive alternatives, the intervention with the lowest
cost-effectiveness ratio should be adopted.

Cost-utility analysis — A form of cost-effectiveness analysis where the out-
comes are measured in units of utility. An intervention should be
adopted if the cost-utility ratio is lower than a decision-maker’s willing-
ness to pay threshold.

Effect size — This is the difference between two groups described in stan-
dard deviation units (i.e., difference divided by the standard deviation),
which is termed the effect size.

Factorial design — A trial design where two or more different interven-
tions are evaluated using the same participant sample. Has the advan-
tage that two trials for the price of one can be undertaken. The simplest
2 x 2 factorial design results in four different groups.
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ITT analysis - intention to treat analysis — This is where all participants are
analysed in their original randomised groups; it is the most robust ana-
lytical method.

Minimisation — A non-random method that can form comparator groups.
Groups are formed in such a way as to ensure that they are balanced on
known covariates. If undertaken properly minimisation is as effective,
and often better, at eliminating selection bias as random allocation.

Multi-variate analysis — In an RCT most known and unknown variables
affecting outcome will be balanced at baseline. Nevertheless, particularly
in small studies, imbalance in prognostic variables can still affect the
precision of the results. This is particularly the case with the pre-test
variable, which will strongly predict outcome. A more precise estimate
of the effect size (i.e., with smaller confidence intervals) can be obtained
by undertaking a multivariate analysis with the pre-test score as a covari-
ate as well as the group allocation.

Numbers needed to treat or teach (NNT) — This is a method of converting
the effects of an intervention into an easily understood metric. Thus, a
NNT of 5 means that five people need to be taught in order that one
extra person passes an important threshold (e.g., an exam).

Observational data or study — Data generated from a non-randomised
study where estimates of effectiveness are gathered by comparing people
exposed to an intervention with those unexposed.

Paired randomisation — Participants are formed into matched pairs on the
basis of important covariates (e.g., gender). Once the study group has
been formed into pairs a random member of each pair is allocated to the
intervention.

Pairwise randomisation — A method of allocating participants that ensures
numerical balance within a centre but avoids the problem of predictabil-
ity that occurs with blocked randomisation. Randomisation takes place
only when two participants are eligible and then one is selected, at ran-
dom, for the intervention.

Participant preference — A type of trial where preferences of participants
are recorded and sometimes only participants with no preference are
randomised.

Pilot study — A type of study that precedes the definitive trial; can be an
internal or external pilot. Characteristics are: small sample size and or
incompletely developed intervention.
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Per-protocol analysis — Participants not complying with the treatment
protocol are excluded from the analysis. Violates randomisation and can
lead to bias.

Placebo — Commonly used in drug trials for the control treatment. The
placebo is an inert substance that looks and tastes like the real drug and
blinds or masks the participant, doctor and assessor as to the treatment

group.

Power — Given a pre-specified hypothesised difference between interven-
tion groups the power of a study relates to the chances of observing any
difference between groups as being statistically significant if it exists.
Power is commonly set at either 80 per cent or 90 per cent.

Preference trial — A trial design that takes participants’ preferences into
account by either asking them before randomisation (fully randomised
preference design) or by only randomising those who do not have a pref-
erence and letting those with a preference have their preferred treatment.

Quasi-alternation — A biased method of constructing group membership
that uses some characteristic of the participant, such as month of birth,
first letter of surname to determine allocation.

Quasi-randomisation — Usually used to refer to alternation or other sys-
tematic methods of forming comparator groups, such allocating by date
of birth.

Random sampling — A sampling method to allow an estimation of a
parameter within a stated population. This allows generalisation of
parameter estimates. Sometimes confused with randomisation.

RCT - Randomised controlled trial. This is where groups have been
formed through random allocation (or a similar method). This is the
main method that ensures that allocation bias is eliminated at baseline.

Regression analysis — A statistical method that is sometimes used on trial
data to adjust for chance imbalances between two groups and to improve
the precision of estimates of any treatment effect.

Regression discontinuity design — A quasi-experimental alternative to the
RCT. This design selects people into their intervention groups on some
pre-test variable with a pre-defined cut-off; if properly implemented this
approach can produce unbiased estimates of effect sizes — albeit less effi-
ciently than an RCT.
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Resentful demoralisation — Participants who have a preference for an
intervention and who are assigned to the opposite intervention may
become demoralised and this may bias the trial’s results.

Selection bias — This occurs when groups are formed by a process other
than randomisation and important factors that are associated with out-
come differ between the groups before they are exposed to the intervention.

Significance — This can be statistical, clinical, educational, economic.
Statistical significance is usually 5 per cent (p = 0.05) or 10 per cent
(p = 0.10) and relates to replication of a trial. Replication of an identi-
cal trial, where there is no treatment effect, many times will result in 5
per cent of the trials showing a difference as being statistically significant
if the 5 per cent level is adopted. Other forms of significance relate
to whether or not a difference between groups is worth having in terms
of policy or practice.

Simple randomisation — This is the easiest form of randomisation akin to
tossing a coin. A disadvantage with simple randomisation is that with
small studies (<100) there is a high probability of having large chance
imbalance between the groups. More importantly, there can be imbalance
in important covariates. Restricted forms of randomisation are often used
to prevent this.

Stratification — This is a process whereby randomisation is restricted (e.g.,
by blocking) such that any important known confounders are balanced
between the groups.

Zelen’s method — A trial design whereby participants are randomised
before consent to take part in the study is obtained. The single consent
method is where consent is only sought from those allocated to the
novel intervention.
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1

Background to Controlled Trials

1.1 Background

A key reason for undertaking any research is to increase certainty in an
uncertain world. We all directly or indirectly consume research. We
hope the treatment we are prescribed by our doctor will be effective in
improving our condition. We want to know which educational inter-
ventions, curricular innovations and teaching methods are effective in
increasing knowledge, skills and understanding. Policy-makers and practi-
tioners are interested in the relative effectiveness of crime and justice inter-
ventions, for example rehabilitation programmes and sentencing policies.

Health and social science research can provide the knowledge that
enables us to determine what does and does not work. The ‘gold-
standard’ research method for addressing the ‘what works?’ question in
‘evidence-informed’ policy-making and practice is the randomised con-
trolled trial (RCT).

The aims of this book, therefore, are: to introduce the RCT; to describe
its methodology and design, focusing on when and how to undertake
an RCT; to describe examples of high quality and weak application of
the method; and to introduce critical appraisal of published RCTs. We
do not include in the book detailed statistical justification for using the
RCT or describe detailed statistical approaches for its analysis. Statistical
theory and analysis are more than adequately covered by other authors
(e.g., Altman, 1991; Bland, 2000). If the research design of an RCT is
adequate and applied rigorously, then relatively simple statistical analysis
is required. Even the most heroic form of statistical analysis cannot com-
pensate for a poorly designed, poorly conducted trial. Consequently, it
is the design aspect of a trial that is the most important issue relating to
an RCT, and this is the focus of the book.



2 Designing Randomised Trials

The randomised controlled trial (RCT) is a simple research method of
elegant design. Two or more groups are formed through random allocation;
one or more of the groups is exposed to an intervention (experimental
group), while the other group(s) receive(s) an alternative treatment or
no treatment (comparison or control group). The effects of the interven-
tion are observed by comparing the outcomes of both groups. If the
groups assembled through randomisation are sufficiently large, we can
be confident that any differences observed between the groups will be a
consequence of the intervention, rather than a result of some other
known or unknown variable.

Population eligible for trial

% Measure (optional)

Randomise (essential)

Intervene (essential)

< 3 > 1T
iii}giiiﬁ iii}giiiﬁ

Measure outcomes (essential)

Figure 1.1:  Schematic outline of a randomised trial
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In Figure 1.1 we show the basic outline of the randomised trial. In essence
the design is as follows: we assemble a population for whom the inter-
vention is appropriate (this population may then be measured, although
this step is not a pre-requisite); we then allocate the participants to two
or more groups and apply the intervention(s) to the groups formed by
randomisation; at some pre-specified time in the future we measure the
groups in terms of their outcome - if there is a difference between the
groups, and assuming that the difference and the sample size are suffi-
cient, we can infer a causal relationship between our intervention and the
group differences.

1.2 The randomised trial

Social interactions in the fields of health care, education, crime and justice,
and other social sciences involve complex phenomena, including rela-
tionships between doctors and patients, teachers and students, social
workers and clients. The best method for evaluating any proposed changes
in health care, education, crime and justice, and other areas of public policy
is the RCT, because it is able to deal adequately with the level of complex-
ity inherent in these fields (Sheldon and Oakley, 2002) by ‘teasing out’
from the background ‘noise’ whether or not an intervention is actually
effective.

The RCT has developed considerably since its inception in the middle of
the last century. Whilst some disciplines use the method more often
than others (health care research compared with, for example, educational
research), the breathtaking simplicity of the design means, for questions
of effectiveness, it could be used more often in place of other less rigorous
evaluative approaches.

In this book we use a variety of examples to illustrate the design of trials.
Due to historical reasons, many of these examples are from health care
research; however, we include examples from other disciplines, in par-
ticular education and crime and justice. This is primarily because, as
health care researchers have applied the RCT away from drug trials, they
have had to grapple with numerous problems that threaten its internal
validity, including how to deal with participants’ strong preferences for a
given treatment. Education and other social science researchers, whilst
dealing with similar problems, have undertaken fewer RCTs in recent
years. Health care trial research is funded more generously than in other
areas, allowing more methodological research activity to take place
in the design and use of the RCT. Nevertheless lessons from the design
and conduct of trials in education and other social sciences (e.g., the
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development of cluster or group randomised trials) have been enthusias-
tically adopted by health care researchers.

The RCT has long been recognised as the ‘gold-standard’ research method
in health care research (Pocock, 1983), although this has not always been
the case. Silverman (2004) described entrenched opposition he encoun-
tered from both clinicians and clinical researchers to the use of the
method in the 1940s and 1950s. It is still sometimes argued, even in
health care, that issues of effectiveness can be resolved through the use
of other research methods, such as basic science, qualitative enquiry or
through before and after approaches (Penston, 2007). However, the use
of other methods to infer causality has led, and continues to lead, to the
implementation of ineffective or harmful interventions.

1.3 Health care disasters

At this point it is worth noting some deadly examples from health
care research of inappropriate implementation of interventions not
previously having been adequately exposed to a randomised trial.
Mistakes in health care research can be counted in mortality or morbid-
ity, and this has led to the realisation that, morally and ethically,
patients need to be protected from potentially hazardous new treat-
ments by first evaluating the treatments in RCTs. In contrast, in other
areas, for instance social welfare, any potentially hazardous effect
of an intervention does not manifest itself with such direct or obvious
consequences.

One of the earliest health care disasters involved administering oxy-
gen to premature infants. In the 1940s and 1950s the incidence of blind-
ness seemed to be increasing among premature babies. The cause of this
was not discovered until an RCT evaluating the ‘routine’ practice of sup-
plementing premature babies with oxygen showed that babies allocated
to oxygen supplementation had significant increases in blindness, com-
pared with un-supplemented infants (Silverman, 1977, 1997). Similarly,
in the late 1940s and early 1950s, and on the basis of evidence from case
reports, some premature babies were given prophylactic antibiotics. It
was only later, during a randomised trial published in 1954, that this
routine practice was shown to lead to brain damage and death in signif-
icantly more babies than those who had received an alternative treat-
ment (Silverman and Altman, 1996).

One of the biggest catastrophes in terms of actual numbers of deaths
was the routine use of anti-arrhythmia drugs for post-myocardial infarc-
tion patients. Many cardiologists were opposed to the use of RCTs on
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Box 1.1: The CAST trial

From about 1978, hundreds of thousands of patients were given fle-
cainide and other, similar anti-arrhythmia drugs. In 1987 an adequately
powered trial was begun. In 1989 the trial was terminated abruptly
due to increased deaths in the active treatment groups.

All cause death was 7.7 per cent in the treatment group compared
with 3.0 per cent in the placebo group (relative risk of death of
taking active treatment = 2.5, 95 per cent confidence interval 1.6 to
4.5) (Cardiac Arrhythmia Suppression Trial (CAST) Investigators,
Preliminary Report, 1991).

It has been estimated that tens of thousands of people died as a
result of uncontrolled use of these agents (Silverman, 1997).

ethical grounds. They believed that such drugs were beneficial and that
to withhold them, therefore, would be unethical (see Box 1.1).

Trials were eventually started in the 1980s, but stopped early because
of significantly increased mortality among patients allocated to the
active treatment (CAST Investigators, 1991). Indeed, the trialists were so
confident the anti-arrhythmia drugs would prove to be beneficial or, at
worst, have no effect, that the trial was designed to enable early stop-
page once an important benefit had been found. Instead, the interim
analysis found that mortality was significantly elevated in the active
treatment groups. As these drugs had not previously been evaluated
using large RCTs, it has been estimated that tens of thousands of
patients died through their unrestricted use in routine clinical practice
(Silverman, 1997).

In another disaster, thousands of pregnant women were given a syn-
thetic hormone to prevent miscarriage. Randomised trials later failed to
show that this treatment — diethylistilboestrol (DES) — was effective.
Unfortunately, it transpired that some female children whose pregnant
mothers were exposed to DES later developed rare vaginal cancers and
other serious health conditions (Oakley, 2000).

In 2004 a randomised controlled trial evaluating a ‘standard’ therapy
for head injured patients (high dose steroids) was terminated half way
through (CRASH Trial Collaborators, 2004). After recruiting half of the
20000 participants across the world it was found that two-week mortal-
ity was significantly elevated among the steroid-treated patients. It has
been estimated that the failure to evaluate this treatment promptly
probably caused the deaths of more than 10000 people (Sauerland and



6  Designing Randomised Trials

Maegele, 2004). In the field of head injuries alone, several ‘standard’
treatments still remain unevaluated (CRASH Trial Collaborators, 2004).

A systematic review and meta-analysis of all the trials of antioxidants
(e.g., betacarotene, vitamins A, C, E and selenium) showed that vitamins
A and E and betacarotene supplementation can actually increase mortal-
ity (Bjelakovic et al., 2007). For vitamin C and selenium supplementation
no evidence was found for harm or benefit.

Medical regulators now require evidence from properly conducted
randomised controlled trials before drug treatments are implemented.
Non-tested older drug treatments, vitamins, herbal supplements, ‘natural’
remedies and many non-pharmaceutical treatments (e.g., novel surgical
therapies) can still be given to patients.

It is important to note that clinicians who have used harmful inter-
ventions probably did so with the best of intentions. Silverman, himself
an early advocate of the use of RCTs in paediatric medicine, describes
the case of a premature infant under his care. On the basis of data derived
from animal experiments, he gave the child a drug treatment to prevent
blindness only to discover later (from an RCT) that this drug increased
mortality among infants and did not prevent blindness (Silverman,
2004).

Whilst new treatments are often seen as better than old interventions
or ‘standard care’ this may not be necessarily true. In a review of RCTs
comparing the efficacy of new drugs for childhood cancers with usual
care it was found that in around half the trials the new drug was super-
ior and in half it was inferior (Kumar et al., 2005). It is important, there-
fore, that all novel interventions are tested in rigorous RCTs.

1.4 Social science trials

Education and other social science trialists are able to point to fewer
clear examples of adverse effects accruing through the lack of an RCT, to
counter the arguments of those who oppose the wider use of trials.
Despite this, however, these areas are not without their equivalent of
anti-arrhythmia disasters and one is the ‘Scared Straight’ programme.
‘Scared Straight’ is a widely used intervention in North America. Juvenile
offenders are taken to meet long-term prisoners in order to deter them
from further crime. A recent version being offered in the UK is to take
juvenile drug users to prisons to meet jailed drug offenders. A series of
RCTs from North America was undertaken and summarised in a system-
atic review. The review demonstrated that the ‘Scared Straight’ pro-
gramme actually increased the risk of offending in the juveniles in the
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Box 1.2: Scared straight (Petrosino et al., 2002)

This initiative originated in the USA in the 1970s. The aim was to
take juvenile offenders and expose them to presentations from pris-
oners serving life sentences, in order to deter them from further
offending behaviour. Uncontrolled evaluations (i.e., before and after
studies) suggested it had had a 94 per cent success rate of preventing
juveniles from recidivism and the programme was widely imple-
mented in the USA. Similar programmes have been used in the UK,
Australia, Norway and Canada.

A systematic review of the randomised trials of Scared Straight
found that all but one indicated a harmful effect of the programme
and increased offending among participants. A meta-analysis of the
trials showed that the odds of offending were 1.68 (95 per cent CI
1.20 to 2.36) for juveniles allocated to the intervention group.

intervention group compared with juveniles in the control group
(Petrosino et al., 2002) (see Box 1.2).

Similar examples include a trial, undertaken in the UK, testing the
effectiveness of social work supervision of school truants, which showed
an increase in the risk of truancy compared with no supervision (Berg
et al., 1978). In the USA a trial was undertaken to look at the use of rou-
tine arrests for people who were suspected of intimate partner abuse
(Hirschel et al., 1992). Contrary to expectations, arrests did not lead to a
reduction in future partner abuse.

An interesting example is the use of driver education among older
school children to reduce vehicle accidents among young drivers on the
basis of survey evidence. However, a systematic review of RCTs showed
that, contrary to expectations, driver education programmes led to an
increase in young driver deaths and road accidents (Cochrane Injuries
Group Driver Education Reviewers, 2001).

1.5 Conclusions

The randomised controlled trial is the most effective method of assess-
ing causality. Other approaches can give misleading results, and there
are many examples, particularly from health care research, where practi-
tioners and policy-makers have implemented ineffective or harmful
interventions on the basis of evidence derived from non-randomised study
designs. Whilst the basic format of the randomised trial (Figure 1.1) is
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exceedingly simple, there are many variations on the basic design,
which allow us to answer different effectiveness questions. For instance,
rather than randomising individual people we may wish to randomise
institutions such as schools or hospitals, in a so-called cluster design.
Despite these variations, however, the basic principle remains the same:
we assemble our groups through random allocation and this allows us to
make causal inferences. Other study designs do not allow us to do this
with the same degree of robustness. In the following chapter we examine
the weaknesses of the before and after study or pre- and post-test design,
which is one of the most widely used study designs to infer causality, a
role, we will argue, for which it is not suitable.

1.6 Key points

e The RCT is the ‘gold-standard’ research method for addressing effec-
tiveness questions in health, education and social policy.

e The essence of the RCT is random allocation of individuals or groups
of people into two (or more) groups to form experimental and con-
trol groups.

e This method leads to the control of all known and unknown vari-
ables in order that a causal relationship between an intervention and
outcome(s) can be established.



2

The Limitations of Before and
After Designs

2.1 Background

Quasi-experimental research methods widely used in health and social
science research are often used to make causal inferences. Yet (with cer-
tain exceptions, for example, the regression discontinuity design, Cook
and Campbell, 1979) their designs are often not sufficiently reliable to
do so. Many quasi-experiments cannot ‘design-out’ potential bias, unlike
randomised controlled trials. In this chapter we discuss the particular
problems of the before and after study.

2.2 Pre- and post-test design

‘It is incident to physicians, [ am afraid, beyond all other men, to mis-
take subsequence for consequence.” Samuel Johnson (1734)

The basic design of the pre- and post-test study (or before and after study)
is as follows. First, a problem is observed through a pre-test, which may
take a number of forms, for example, high blood pressure in a patient,
low test scores, increases in crime incidence. After identification and
measurement of the problem an intervention is implemented. The par-
ticipants are re-tested (post-test). Any differences between the pre- and
post-test measures are sometimes then ascribed to the intervention. For
example, if patients with high blood pressure are given a medication to
reduce their blood pressure and on re-measurement the blood pressure
is reduced, a causal connection is sometimes assumed. Similarly, a group
of students with the lowest test scores in an exam are given extra tuition
and then re-tested. Again, if the test results have increased sometimes a
causal inference is made. Another example could be to identify distinct
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geographical areas with a high street crime rate, devote extra policing
resources to these areas and then re-measure the incidence of crime.
Cook and Campbell (1979) have deemed this evaluative approach to be
the weakest ‘quasi-experimental’ method, because it is subject to several
flaws.

2.3 Temporal changes

The first problem with a pre- and post-test design is one of temporal
trends. Many acute illnesses tend to be self-limiting, and recovery will
occur in the absence of any intervention — a point Dr Johnson made in
the eighteenth century. Similarly, in the field of education, children
tend to improve in knowledge, understanding and skills irrespective of
any intervention but simply through increased maturity during the pas-
sage of time. Furthermore, within an educational, health care or judicial
setting, when people are exposed to a routine intervention this often
appears to have a positive effect. Disentangling this effect from any add-
ition or change due to a novel intervention is virtually impossible using
a pre- and post-test design. These temporal effects, however, can be further
exaggerated by the statistical phenomenon of ‘regression to the mean’.

2.4 Regression to the mean

The regression to the mean (RTM) phenomenon is widespread, and
affects nearly all fields of endeavour (Morton and Torgerson, 2003). The
phenomenon occurs when a group of individuals, schools, hospitals,
etc., is measured or tested. If, for example, a group of schools is meas-
ured in terms of performance in public examinations a spread of values
will be observed, ranging from high to low. The majority of the schools,
however, will cluster around the average. If the schools are measured
again twelve months later, the schools with low initial scores will tend
to ‘regress’ upwards towards the mean, whilst the schools that initially
scored very well will tend to decline towards the mean. Similarly, when a
group of children or patients is measured with a test and then re-measured
with either the same test or a different one, the individuals with ‘extreme’
high or low scores on the first test (i.e., the outliers) will tend to regress
to the mean. If an intervention focuses on individuals who score below
a certain test threshold this statistical phenomenon ensures that, as a
group, the individuals will improve whether or not the intervention is
actually effective. Note that regression to the mean is a ‘group’ phenom-
enon. Within the group some individual values will not change between
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tests, or even become more extreme. Regression to the mean does not
guarantee that all extreme values will regress to the mean, only that most
will (Morton and Torgerson, 2003). Importantly, it is impossible to iden-
tify from a group of extreme values those that will or will not regress
without any intervention.

Due to lack of understanding about regression to the mean many
people assume that, because an intervention among people with ‘extreme’
low values has been followed by a consequent improvement, the inter-
vention has been effective.

Misunderstanding of this phenomenon is widespread in many fields.

I suspect that the regression fallacy is the most common fallacy in the
statistical analysis of economic data. (Friedman, 1992)

Tversky and Kahneman (1974) described misinterpretation of the phe-
nomenon by pilot instructors, who noted that trainee pilots’ good land-
ings accompanied by praise invariably led to poor landings on subsequent
flights. Conversely poor landings (and chastisement) seemed to lead to
‘improved’ landing skills (Tversky and Kahneman, 1974). This was mis-
interpreted as the praise encouraging pilots to be lulled into compla-
cency and chastisement improving their performance, when, in fact, the
actual explanation for the subsequent change in landings was the regres-
sion to the mean effect. For every landing appraisal there is an element
of error. Measurement of single landings among a group of pilots will iden-
tify some that have landed heavily and others that have landed well.
Regression to the mean occurs on re-measurement of the next landing.

Another classic example of the regression to the mean phenomenon is
change in road safety policy after an increase in road traffic accidents
(Campbell and Ross, 1968). A sudden increase in road accidents often
provokes a police response of cracking down on drink driving, for example.
Because of regression to the mean it is highly likely that in the following
year the accident rate will fall, irrespective of the effectiveness or other-
wise of the intervention.

Regression to the mean occurs when there is a measurement error due
to a number of possible factors: for example, a test may not measure the
‘true’ value of a student’s knowledge and understanding; the student may
make mistakes and perform unexpectedly badly; the test itself may not
be an accurate measure of all the necessary knowledge and skills; or the
test marker may make mistakes. A student with an extreme value (high
or low) will, on average, have a greater error value attached to their ‘true’
score result compared with a student who achieves an average value.
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If we then re-measure the student with an extreme value the second test
will tend to move towards the true value because, by chance, a propor-
tion of the observed first result was erroneous.

Where there is little measurement error, regression to the mean has
little influence. For example, if we measure the height and weight of a
sample of people and then re-measure them an hour later on the same
scales those at the extremes of the height and weight distribution will
tend to remain constant, as there is usually little measurement error
associated with such scales. There will be some difference in measure-
ments, but these will only be in the order of a few millimetres or grams.
On the other hand, if we measure the blood pressure of the same group
of people and then re-measure this an hour later we will find that the
blood pressure measurements of those with initial high blood pressure
have, on average, tended to decrease and the blood pressure measure-
ments of those with initial low blood pressure have, on average, increased.
This is because measurement of blood pressure has a high error value,
unlike measurement of height and weight.

In an educational example of regression to the mean let us consider
two RCTs in literacy learning (Foster et al., 1994). In the first experiment
children ‘with PAT scores greater than 20 (67 per cent) were not included
in the study’ (Foster et al., 1994). On the basis of a single test the authors
chose the children at the bottom of the distribution to be included in
the study. Consequently we would expect an increase in their scores due
to regression to the mean effects. In this experiment, the children in the
control group improved their scores by about 0.5 of a standard deviation,
whilst the children in the intervention group improved their scores by 1.8
standard deviations. The improvement attributable to the intervention
is about 1.3 standard deviations (i.e., 1.8 — 0.5). In the second study the
authors tested another group of children and ‘children with the highest
and lowest scores on this test were eliminated from the sample’. In this
instance we would expect there to be little or no regression to the mean
effects, and the change in the control group was indeed much lower
compared with the first experiment at about —0.15 of a standard devia-
tion (Foster et al., 1994).

In Figure 2.1 the regression to the mean phenomenon is demon-
strated by a graphical representation of the assessments of fifteen stu-
dents’ essays ‘blind’ marked by two markers. This was the first time the
two markers had marked together (which would increase the error value
of the test). In the figure, the difference in marks between the two mark-
ers is plotted against the first marker’s mark on the x-axis. Note that for
those students who scored between 50 per cent and 60 per cent with the
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first marker (i.e., around the average) there was high agreement between
markers. For those students who scored a high mark with the first marker,
the second marker tended to disagree more and score them lower. The
corresponding plot of these marks shows a classic symptom of regression
towards the mean, where there is a correlation between the difference in
pre- and post-test scores (in this instance first and second markers) and
pre-test scores.

Regression to the mean will confound any education, health or public
policy strategy based on selecting groups of people or hospitals, prisons
or schools that have performed particularly badly or well on a measure.
Regression to the mean will explain why so many ‘action research’ or
‘clinical audit’ projects appear to be successful. A problem is identified
through using some form of measurement (e.g., an increase in poor stu-
dent behaviour, or increase in hospital infections), some change is imple-
mented and there is a fairly good chance that the regression to the mean
effect will produce an improvement. One of us (DJT) heard of an audit
of a cervical screening programme which resulted in a ranking of cytolo-
gists with those with low false positive rates at the top of the ranking
and those with high false positive rates at the bottom. Examining cervical
smears under a microscope is not error-free, and consequently, by chance,
some cytologists will have a relatively high error rate and call back more
women than necessary for a re-smear. In this instance those at the bot-
tom of the table were sent for ‘retraining’ and the next audit found that
they had improved, just as we would expect through regression effects.

Government policy initiatives are affected by regression to the mean
effects. For instance, the policy of identifying poorly performing schools,
hospitals or police forces and ‘naming and shaming’ them in a league
table will tend to appear to work, as these ‘extreme’ or outlying values
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Figure 2.1:  Correlation between two test scores
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will tend to regress back to the group mean. To simulate such an effect,
one of us (CJT) analysed the performance among education authorities
with respect to percentage changes in pass rates in public exams (Torgerson,
2001). The authorities were ranked from highest to lowest in their
change in exam pass rates between 1998 and 1999. The top S per cent of
authorities increased their pass rate by 7.1 per cent, compared with the
average of 2 per cent, whilst the pass rate of the bottom 5 per cent
declined by 1.8 per cent. In the following year, however, the bottom
5 per cent increased their pass rate by 4.7 per cent, whilst the top 5 per cent
only increased theirs by 1.2 per cent. The difference in percentage pass
rates between authorities at the top and the bottom of the ‘league’ table
was entirely predictable due to regression to the mean effects. If the gov-
ernment had initiated some educational policy programme aimed at the
bottom 5 per cent of education authorities in 1999 then it would have
seen a gratifying increase in examination pass rates in the subsequent
year. Of course this finding would have been completely confounded by
regression to the mean effects.

The UK government measured burglary rates around the country and
then initiated a burglary prevention programme among areas of high
crime. An evaluation appeared to show it had worked, but the results
were entirely consistent with the regression to the mean phenomenon
(Marchant, 2005).

Regression to the mean effects can also explain the ‘placebo’ phe-
nomenon. In many placebo-controlled trials the placebo group often
exhibits an apparent treatment effect. This has been observed in, for
example, placebo-controlled trials of hormone replacement therapy (HRT).
Karlberg et al. (1995) undertook a placebo-controlled trial of HRT to
improve quality of life among women going through the menopause.
They found that women on the placebo treatment, whose average
symptom score was 26 at the start of treatment, went on to experience a
seven-point improvement after six weeks of placebo therapy (HRT pro-
duced a 17-point improvement). The improvement in the placebo group
would be partly, if not solely, attributable to regression to the mean
effects. This is because many quality of life measures are not accurate
measures of the ‘true’ quality of life of a person, but contain an element of
error within the measurement. For example, measurement of menopausal
symptoms will be prone to error: generally women who are eligible for
trials of HRT are selected on the basis that they have higher menopausal
symptom scores than average and consequently it is likely that, on
re-testing such women, their scores will tend to regress towards the
population mean.
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The placebo effect is controversial. A systematic review of three-armed
trials (placebo, active and open control studies) found little evidence for
a placebo effect (Hrobjartsson and Gotzsche, 2001). Much of what is
termed the ‘placebo effect’ will simply be due to the regression effect
although this does not exclude the possibility of there being a true placebo
phenomenon.

2.5 Discussion

The pre- and post-test method will consistently over-estimate any bene-
fit of an intervention because of regression to the mean effects and tem-
poral changes. A tertiary review (i.e., a review of reviews) of studies of
psychological, educational and behavioural treatments has shown that
before and after studies consistently over-estimate effectiveness by an
average of 61 per cent compared with studies with a control group (Lipsey
and Wilson, 1993). Therefore, the use of a concurrent control group is
absolutely essential in order to control for temporal changes and regres-
sion to the mean effects.

Many social science interventions are evaluated using before and after
designs. For an example of an evaluation that demonstrated the need for
a contemporaneous control group, consider an experiment examining
different interventions to prevent men from assaulting their female part-
ners (Dunford, 2000). Three different interventions were evaluated and
the re-assault rate was examined. Eighty-three per cent of the men in the
intervention groups did not re-injure their partner — one of the highest
rates reported in the literature. However, the control group, which
did not receive any intervention, had very similar rates (i.e., 79 per cent).
The difference was not statistically significant, demonstrating an absence
of evidence that any of the three interventions was more effective than
no intervention (Dunford, 2000). If a control group had not been included
in this evaluation, then one may have concluded, erroneously, that the
three interventions were all effective. There are probably a number of
reasons to explain why the majority of men did not re-injure their part-
ners. Firstly, regression to the mean effects may have been partly respon-
sible. For a proportion of the men the spousal abuse was an unexpected
event and unlikely to happen again, at least in the short term, that is,
their behaviour was ‘extreme’ and on re-measurement there was a regres-
sion to the long-term mean of non-violent behaviour. Secondly, all of
the men were brought to the attention of the authorities and this ‘inter-
vention’ alone may have had some effect. The addition of counselling
may not have added any benefit. Finally, temporal changes could explain
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some of the changes in behaviour. For example, some of the men may
have gained employment due to an upturn in the economy, which in
turn could have lowered their levels of stress and made them less likely
to assault their partners. Importantly, because this study contained a
contemporaneous control group, all of these effects would have affected
all groups equally.

It is possible to evaluate an intervention without a control group and
make a causal inference in some cases. Once diagnosis of some diseases
has been made we know the outcome, with almost certainty. Once clin-
ical symptoms of rabies appear death is virtually inevitable. Consequently,
any treatment which results in the recovery of even a few patients can
be deemed to be effective. Another example where a trial is, arguably
unnecessary, is the use of the ‘Mother’s kiss’ technique to dislodge for-
eign objects from a child’s nasal passage (Glasziou et al., 2007). In this
technique the parent of a child with the object in the nostril occludes
the opposite nostril and blows in the child’s mouth. Within ten seconds
this will usually remove the offending object. Because the effect is dramatic
and the object did not dislodge itself in the preceding hours, we can be
confident that this is an effect of treatment and therefore does not war-
rant testing in an RCT. However, the circumstances where this occurs are
relatively rare, especially in the wider social sciences. This is due to the
myriad of potentially alternative explanations for change, and conse-
quently we need an untreated control group, preferably formed by ran-
dom allocation, to control for these confounders.

The need to use contemporaneous control groups when trying to esti-
mate effectiveness has been recognised for some considerable time. In the
next chapter we consider the historical perspective of the controlled trial.

2.6 Key points

e One group before and after designs are widely used research methods
(e.g., action research, audit, design experiments).

e Such single before and after designs are biased through temporal and
regression to the mean effects.

e Regression to the mean occurs when a single test with an error com-
ponent is used to categorise groups and then another similar test is
used as follow-up.

e Control groups are needed to control for regression to the mean and
temporal effects.
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History of Controlled Trials

3.1 Background

The problems of using pre- and post-test designs have been recognised
by researchers from different disciplines for many years. The need for a
concurrent control group has been recognised for at least 150 to 200
years (Chalmers, 2001).

3.2 Trials in the twentieth century

Most modern randomised controlled trials in the social sciences can trace
the history of their design to the 1920s and 1930s when R. A. Fisher, a stat-
istician, formalised random allocation within experimental agriculture
(Fisher, 1971). The influence of agricultural experiments is still to be found
in the terminology of RCTs in health and the social sciences. For example,
‘blocked’ randomisation originally related to blocks of land, whilst ‘split-
plot’ design related to splitting a plot of land into different areas. In the
1940s, Lindquist (1940) wrote a book ‘translating’ Fisher’s texts on agricul-
tural statistics into the field of educational research. He described several
randomised designs appropriate for the use of evaluating educational inter-
ventions in school settings. In particular, he described how confounding
could be avoided in educational trials if whole classes or schools were
randomised (i.e., cluster or group randomisation) (Lindquist, 1940).
Furthermore, he described the appropriate statistical methods for analysing
cluster trials, an area neglected by health researchers for about fifty years.
Oakley reports (2000) that randomised experiments in the field of lit-
eracy instruction for children with learning difficulties were conducted
around the beginning of the twentieth century, although it is difficult to
ascertain how the control groups in some of these studies were formed,

17
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and they may not have used true random allocation (Forsetlund et al.,
2007). Forsetlund and colleagues (2007) have described their search for
the first RCT of social interventions. The earliest study they found that
unequivocally used randomisation was published in the early 1930s
(Forsetlund et al., 2007). Two studies by the same author looked at the
effect of counselling on students’ performance (Walters, 1931, 1932).
In the trial described by Walters (1932), 994 freshman, or first-year under-
graduate students, were ‘divided into three equal groups by random
sampling’. The aim of the study was to assess whether counselling stu-
dents by older peers or tutors resulted in better progress than no coun-
selling. However, the author referred to a smaller study he published in
the previous year where ‘the 220 delinquent freshmen were divided into
two groups by random sampling’ (Walters, 1931). In this short report
Walters noted that the ‘delinquency in the counselled group had decreased
34 per cent, while that of the control group had fallen only 13 per cent,
a net saving of 21 per cent’ (Walters, 1931).

An earlier trial that looked at interventions to increase voting behav-
iour may have also been randomised (Gosnell, 1926), and this pre-dated
Walters’ experiments by about five years. The key passage was as follows:

In order to set up this experiment it was necessary to keep constant,
within reasonable limits, all the factors that enter into the electoral
process except the particular stimuli which were to be tested [list of
factors]. The method of random sampling was used to control these
factors during the testing of the particular stimuli used in the experi-
ment. (Gosnell, 1926)

It seems likely that Gosnell was describing the following process: 6000
adults were identified and then a random half of the sample was given an
intervention leaving the other half-sample to act as the control group.
Although the paper refers to random sampling, as do the reports by
Walters, it seems that the paragraph above describes random allocation.

A more widely known randomised trial of a social science interven-
tion was the Cambridge-Somerville experiment in 1937. In this trial
‘delinquent’ boys were allocated into two groups by the toss of a coin:
one group received the intervention (social worker attention) and the
other acted as a control group (Oakley, 2000). Follow-up in this experi-
ment continued until the 1970s when the boys were middle-aged men.
The intervention ultimately proved to be unsuccessful, as those who
received the social work intervention were more likely to have been
imprisoned than those who did not. Indeed, all the study outcomes
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favoured the control group rather than the intervention group. It has
been argued that an unfortunate consequence of the Cambridge-
Somerville experiment was to make the social work profession abandon
the use of controlled trials as the gold-standard method of evaluation as
it did not produce the ‘correct’ results (MacDonald, 1997).

The Medical Research Council’s 1948 streptomycin trial (Medical
Research Council, 1948) is often perceived as the first ‘properly’ randomised
controlled trial in health care research; nevertheless there are reports of
other controlled trials before this experiment. In 1944 an RCT of a substance
called patulin was undertaken to test its effectiveness for the treatment of
the common cold (Medical Research Council, 1944). Based on numerous
anecdotes and some poor quantitative evidence, patulin was seen as an
effective treatment for the common cold. To test this belief in a rigorous
fashion, nearly 1500 workers from a number of factories were randomised
to receive either patulin or a placebo. The trial failed to demonstrate that
patulin was an effective treatment for the common cold. Historically, this
study is often overlooked possibly because it had a null result.

The 1948 streptomycin study to treat pulmonary tuberculosis (TB)
established its effectiveness. The impetus of the trial was the need to
ration a scarce resource (streptomycin). Patients with pulmonary TB were
enrolled into the study, and those with infection of the meninges of the
brain were excluded, as such infection invariably proved to be fatal. The
trial demonstrated a significant benefit of treatment; however, it also
showed that a substantial proportion of untreated patients improved.

In 1954 the largest RCT ever to have taken place was performed in the
USA where 750000 children were randomised to receive either polio
vaccination or placebo vaccination (there was an additional observa-
tional cohort of children). This trial provided evidence of the efficacy of
polio vaccine. The study also noted a volunteer bias: those who declined
to take part in the trial had a lower incidence of polio than those in the
control groups. Jonas Salk, the originator of the vaccine, was not particu-
larly sympathetic to the idea of RCTs:

I found but one person who rigidly adhered to the idea of a placebo
control and he is a bio-statistician who, if he did not adhere to this
view, would have had to admit his own purposelessness in life. (Salk,
quoted in Rosenburger and Lachin, 2002)

Today we can learn important lessons from such a large trial. Many of the
current arguments about, for example, the safety of measles vaccination,
could be resolved if we undertook an RCT with millions of participants
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instead of pursuing current policy: an uncontrolled experiment on all
children.

3.3 Trials before the twentieth century

There is compelling evidence of experiments in medicine using similar
methods to randomisation to form control and treatment groups pre-
dating the streptomycin and patulin trials. Chalmers recently described
several such experiments (Chalmers, 2001), including, for example, an
experiment undertaken by a surgeon in the Peninsular war in the early
nineteenth century. One-third of 366 sick soldiers were allocated to
being routinely bled whilst the other two-thirds were allocated to not
being bled. Of the soldiers allocated to bleeding thirty-five (29 per cent)
subsequently died; in contrast, of those allocated to the no bleeding
group only six (2.5 per cent) died.

It had been so arranged, that this number was admitted, alternately,
in such a manner that each of us had one third of the whole. The sick
were indiscriminately received, and were attended as nearly as possible
with the same care and accommodated with the same comforts. One
third of the whole were soldiers of the 61st Regiment, the remainder
of my own (the 42nd) Regiment. Neither Mr Anderson nor I ever
once employed the lancet. He lost two, I four cases; whilst out of the
other third [treated with bloodletting by the third surgeon] thirty five
patients died. (Milne and Chalmers, 2006)

In 1747 James Lind (www.jameslindlibrary.org/) used an experimental
method to investigate the treatment of scurvy through the use of lemons
and oranges. In that experiment twelve sailors suffering from the disease
were allocated to receive lemons and oranges or an alternative such as
vinegar or salt water. The lemons and oranges treatment was so success-
ful that the two sailors allocated to it were well enough to nurse the other
victims of the disease or to return to duty (Pocock, 1983). Like the army,
however, the navy did not take notice of the results of this experiment
and another generation was to pass before routine scurvy prevention,
using citrus fruits, was introduced into the navy (Rodger, 2005).

3.4 Conclusions

Controlled trials have been undertaken for some considerable time.
Randomisation was only formally adopted within the last 100 years,
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starting in agriculture. The Medical Research Council adopted random
allocation for some major studies in the 1940s, which brought it into
wider use within health care. Since then the number of RCTs in health
care has exploded, with over half a million controlled trials. Although
the number of RCTs in health care has been growing at an exponential
rate since the 1940s, there is a worrying trend that since 2000 the number
of new trials being reported has declined (Gluud and Nikolova, 2007).
This may be partly due to increased regulation, such as the European
Clinical Trials Directive.

The USA and UK dominate as countries that undertake the most
health care trials, with about 22 per cent of all trials being undertaken in
the USA and 12 per cent of all trials being of UK origin (Gluud and
Nikolova, 2007). Interestingly, however, when the number of trials per
million of the population is calculated then Sweden, Denmark and New
Zealand have undertaken the most trials, with the UK only eighth in the
league table and the USA trailing a distant eighteenth (Gluud
and Nikolova, 2007). Other large European countries, such as France and
Germany, appear to conduct relatively few RCTs in the health care field.

Controlled trials were developed because it was widely recognised that
uncontrolled evaluations are susceptible to a number of biases that can-
not be addressed unless a contemporaneous control group is included in
the evaluation. A contemporaneous control group may prevent temporal
changes affecting the results. Whilst such control groups can be identi-
fied or created by methods other than randomisation, these are inferior
to designs using random allocation which can also control for regression
to the mean and selection effects. In the next chapter we discuss the
importance of randomisation.

3.5 Key points

e Randomised trials have been described since the 1940s: by Lindquist
in education, and the MRC in health care.

e Two of the first randomised trials of the twentieth century were
undertaken in the 1930s in educational research.

e Controlled studies of some kind have been undertaken for several
hundred years.

e Many hundreds of thousands of patients may have died or been
injured because of failure to undertake RCTs early enough.

e Many treatments used routinely today may be hazardous due to lack
of evidence of effectiveness using the appropriate RCT.
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What is Special About
Randomisation?

4.1 Background

The main difference between other study design methods and the ran-
domised controlled trial is that in the latter two or more groups are
formed by random allocation. Randomisation is the best approach to
dealing with and controlling for selection bias, regression to the mean
and temporal changes. Other issues, such as blinding, or the use of
placebos, may be associated with some types of randomised trial but
their use is neither a necessary nor a sufficient condition for a study to
be identified as a randomised trial.

4.2 Non-randomised controlled trials and selection bias

Control groups must be formed through a process of random allocation,
or a similar method, in order to eliminate selection bias. Selection bias
occurs when the intervention/treatment group has an imbalance in a
variable that is associated with outcome compared with the control
group. For example, early non-randomised evaluations of computer
technology in schools compared technology resource-rich schools with
technology resource-poor schools (Torgerson and Elbourne, 2002). The
problem with this approach was that schools with large numbers of
computers were likely to be systematically different from schools with
lower numbers of computers. For instance, it is likely that technology-rich
schools have more pupils from higher socio-economic groups compared
with schools that are technology-poor. Because socio-economic status is
heavily correlated with educational performance any difference between
the ‘high’ and ‘low’ usage schools could merely have been a reflection of
differences in the socio-economic backgrounds of the children attending

22
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the schools rather than differences in the technology resources in the
schools. The best way of avoiding this kind of selection bias is to form
intervention and control groups through random allocation. In this
instance, we could have randomised schools to receive more resources
to spend specifically on computers, whilst the control schools could have
received the same resource with the proviso to spend it on other activities.

It is possible to control statistically for some selection biases. For
example, if the socio-economic backgrounds of children within schools
could be measured accurately, this could be used to ‘control’ or ‘adjust’
for mean differences in this variable between the groups. However,
whilst one can legitimately adjust for known variables using the statis-
tical technique of multiple regression analysis, it is impossible to adjust
statistically for unknown variables that might affect outcome. For example,
if the teachers in schools with computers were different in some other
un-measured variable from teachers in the control schools, we could not
control for this variable in any analysis.

Even if we know that a certain variable (for example socio-economic
background) will influence outcome, often it is difficult to measure the
variable accurately. Any measurement of socio-economic background is
a proxy marker of its ‘real’ characteristic. Consequently we cannot con-
trol for its effects properly through a statistical analysis. For incom-
pletely measured variables we can only deal with any relationship with
outcome through the process of randomisation. Randomisation also
controls for the unknown variables that may affect outcome, in addition
to known, partially measured variables. The beauty of randomisation is
that it controls for the known, measurable variables, the known unmeas-
ured variables and, most importantly, the unknown and unmeasured
variables that could affect outcomes.

As we know, there are known knowns. There are things we know we
know. We also know there are known unknowns. That is to say we
know there are some things we do not know. But there are also
unknown unknowns, the ones we don’t know we don’t know. (Donald
Rumsfeld, 12 February 2002, Department of Defense news briefing)

In non-randomised studies selection bias can produce unreliable results.
For example, hormone replacement therapy (HRT) has been shown to
be associated with lower risks of cardiovascular disease and stroke. These
observations were derived from comparing the outcomes of women
using HRT with the outcomes of women not using it (Grady et al., 1992).
Women using HRT have consistently been shown to experience fewer
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heart attacks and strokes when compared with women of a similar age
not using HRT. Because the comparison groups in these observations
were not assembled using randomisation or similar techniques, the poten-
tial for selection bias is great. For instance, HRT users tend to be of a
higher socio-economic group, to exercise more and to eat a better diet
than non-users. All of these variables are associated with lower inci-
dence of cardiovascular disease and strokes. When a large RCT was
undertaken it reported that HRT actually increased heart disease and
strokes compared with placebo users (Writing Group, 2002). Similarly,
non-randomised data have appeared to show that supplements of anti-
oxidant vitamins (e.g., vitamin E, beta-carotene, vitamin C) can protect
against heart disease (Khaw et al., 2001). When a large RCT was under-
taken to test this widespread belief no evidence was found of any bene-
fit, although there was a slight, not statistically significant, increase in
mortality in the supplemented group (MRC/BHF Heart Protection Study,
2002). Vitamin E supplementation has even been shown (in an RCT) to
increase the incidence of colds and other infections among older people
(Gratt et al., 2002). Indeed, a meta-analysis of vitamin E trials demon-
strated that the most commonly used dose of vitamin E (i.e., in excess of
800 IU per day) actually significantly increases the risk of mortality com-
pared with no vitamin E supplements (Miller et al., 2005), with a more
recent review confirming this risk of harm (Bjelakovic et al., 2007).
These examples show how rigorously conducted RCTs can overturn the
results based on non-randomised evidence.

In the examples cited above, selection bias created an association that
turned out not to be true. Sometimes, however, we note an association,
which is actually causal, and make the false assumption with regard to
the direction of causality. For example, the use of dummies (pacifiers) is
associated with cessation of breast-feeding. In an effort to promote breast-
feeding the World Health Organisation (WHO) recommended that nurs-
ing mothers should avoid the use of dummies (Kramer et al., 2001). In
an RCT Kramer and colleagues tested an intervention that reduced the
use of dummies from 39 per cent to 16 per cent. However, at three
months the percentage of babies still being breast-fed was exactly the
same in both groups (i.e., 82 per cent). When the researchers compared
the mothers who used dummies with those who did not they found 25
per cent of mothers using dummies had given up breast-feeding com-
pared with 13 per cent who did not use dummies. In this instance, the
decision to give up breast-feeding caused the dummy use (not the other
way around). Therefore, the WHO advice, based on non-randomised
evidence, was simply erroneous.
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As mentioned above, the RCT is the best way of ascertaining the effect-
iveness of some potential interventions by disentangling the myriad of
potentially confounding variables. For example, young people living in
a deprived area are more likely to undertake criminal activities than
young people living in a more affluent area. To ascertain the best policy
response to this problem Kling et al. (2005) undertook an RCT in the USA.
Three groups were formed: a control group; an experimental group where
participants were offered housing vouchers redeemable for rental proper-
ties only in affluent areas; and a third group where participants were given
vouchers redeemable anywhere. The results showed a significant reduction
in crime among females, a lower reduction among males, but in both cases
only among those families which moved out of the deprived neighbour-
hoods. For families in the voucher-control group, that is, the group which
received housing vouchers, redeemable anywhere, there was no effect
on incidence of crime among the young people. This suggests, therefore,
that it was the influence of the neighbourhood rather than poverty per
se that increased the incidence of crime in the young people. Interestingly,
there was no impact on educational outcomes (Kling et al., 2005).

Some studies reported as randomised trials are actually not randomised
trials. Before we discuss how random allocation ensures that, on aver-
age, the groups formed are equivalent, we first describe a number of
‘quasi-random’ methods of allocating participants to treatment groups,
and demonstrate why these can lead to bias.

4.3 Quasi-random methods of forming comparison groups

The quasi-random method most frequently used to form the experimen-
tal groups is probably ‘alternation’. Alternation is a deterministic method
of forming groups and can produce equivalent groups as effectively and
sometimes more effectively than simple randomisation. However, it is
generally considered inferior to true random allocation, the main reason
for which is that alternation is usually predictable. Researchers can, con-
sciously or unconsciously, schedule participants leading to a biased allo-
cation. Another reason why randomisation is preferable to alternation is
that most statistical tests are based upon mathematical theories of ‘ran-
domness’. It is possible, though unlikely, that alternation can lead to a
correlation in covariates between members of the groups and this will
have the effect of making subsequent statistical tests less conservative
(Chalmers, 2001). In the following we will describe alternation.
Potential participants are ‘alternated’ between treatments. In ‘trickle’
or sequential recruitment, where participants are recruited as they arrive
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at a clinic, for example, then we would randomly assign the first partici-
pant to, say, treatment A, the next to treatment B, the third to treatment
A and so on until we have recruited all of our sample. The description of
the bloodletting experiment in the nineteenth century as described earl-
ier appeared to use alternation. Alternatively, in ‘block’ recruitment,
such as a list of school children to be allocated to an educational experi-
ment, we would take a list of participants, rank them in some way, per-
haps alphabetically, and allocate the first on the list to, say, treatment A
and then the second to treatment B, third to treatment A, fourth to B
and so on until all participants have been allocated. As long as there is
no interference in this schedule of allocation the resulting groups will,
on average, be equivalent in known and unknown variables. If partici-
pants are ranked by a variable, such as age, then alternation will produce
more equivalent groups than simple randomisation, as such an approach
automatically leads to stratification, which is where randomisation is
constrained, so as to ensure balanced groups (see later). The problem
that arises with alternation is that the allocation sequence can usually be
known in advance and participants can be withheld from the alterna-
tion schedule. If the alternation is not adhered to, this can lead to the
formation of groups that are not equivalent. Thus, selection bias is intro-
duced, making the results of the experiment unreliable.

Another quasi-random method (which is sometimes considered to be
ordinary alternation) is ‘quasi-alternation’. This is where participants are
allocated according to month or year of birth, day of the week, alpha-
betically or using some similar approach. An example of quasi-alternation
would be where all people with a surname beginning with A would be
allocated to one group and all those with a surname beginning with B
would be allocated to the other group. A similar example would be
where all participants born in January would be in the same group, as
would all participants born in February. This method of allocation not
only leads to predictability, which is the main weakness of ordinary
alternation, but can also lead to selection bias in its own right. If, for
some reason, outcome is correlated with month of birth, for example,
then differences may be attributed to this rather than to the interven-
tion. For example, in the English education system, children born in
August tend, on average, to be educationally disadvantaged because
they are always ‘young’ in the school year compared with others in their
peer group; for children born in September, on average, the converse is
the case. Similarly, alphabetical alternation is likely to produce biased
groups as clearly some ethnic groups have surnames that favour certain
letters of the alphabet and therefore tend to predominate in one of the
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comparator groups. As an example of quasi-alternation consider the fol-
lowing experiment. In this study the authors wanted to see if using a lot-
tery ticket increased response rates to a questionnaire survey. They allocated
the potential respondents into three groups in the following way:

Before mailing, recipients were randomized by rearranging them in
alphabetical order according to the first name of each person. The
first 250 received one scratch ticket for a lottery conducted by the
Norwegian Society for the Blind, the second 250 received two such
scratch tickets, and the third 250 were promised two scratch tickets if
they replied within one week. (Finsen and Storeheier, 2006)

In this instance they found an imbalance between males and females
between the allocated groups. There were statistically significantly fewer
females in the control group compared with the other two groups. This
is because, presumably, female Norwegian names favour letters towards
the beginning of the alphabet compared with male names. Consequently
this study is likely to suffer bias in its results, particularly if men and
women respond differently to the use of lottery tickets when completing
a questionnaire. It is interesting to note that the authors (and the journal
referees) of this paper, thought that this was a randomised trial.
Although systematic methods, such as the one described above, some-
times appear to be alternation, they are in fact substantially inferior as
they can introduce bias in their own right even if rigorously undertaken.
Because alternation is predictable it should, in general, be avoided.
However, uncritical bias towards alternation may lead to the classifica-
tion of some studies as being weak when, in fact, they are sound. For
example, a systematic review of trials looking at different questionnaire
designs for improving response rates noted that many probably used
alternation (Edwards et al., 2002). Nevertheless, the reviewers rightly
concluded that in this instance alternation would not have led to bias in
the trials because those mailing out questionnaires would not have had
foreknowledge of the characteristics of respondents, which is necessary
for alternation to be subverted. Alternation is used occasionally when
groups of people are being allocated. For example, in a controlled trial of
fitting dogs with an insecticide dog collar to reduce the incidence of the
sand fly transmitted disease (Leishmania infantum) to children in Iran,
eighteen villages were matched in incidence of disease and then alternated
to intervention and control groups (Gavgani et al., 2002). By using this
approach the trialists probably made the groups more comparable than
if they had used simple randomisation. Nevertheless, the circumstances
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where alternation is permitted are rare, and even if scientifically justi-
fied, will tend to lead to the study being classed as methodologically weak
by others. It is therefore usually best avoided.

There are other non-random methods that should be avoided. One quite
widely used method involves the use of an identification number. We
might for instance allocate people on the basis of their hospital number or
their social security/national insurance number: odd numbers might form
one group and even numbers the other. The major problem with this
approach is that it invites subversion, or sabotage, of the allocation process.
Because we know that odd numbers will receive a given intervention we
can, if so minded, withhold the intervention to selected participants. This
can introduce selection bias. For example, Jones and colleagues (2002) allo-
cated participants into their study on school retention in the following way:

Assignment to study group was based on the last digit in their social
security number . . . At the start of each month all San Diego County
welfare recipients were examined for eligibility and, if eligible, were
randomly assigned to a study group. (Jones et al., 2002)

The problem with this approach is that whoever determines eligibility
for the trial will know by simply looking at the social security number
which assignment group a potential participant will fall into. This means
that consciously or unconsciously decisions about possible eligibility
can be driven by foreknowledge of group assignment. Consequently it is
possible that the allocation process can be susceptible to selection effects.
Note also that the authors thought that they were randomly allocating
participants to their study.

Allocation using identification numbers is not only a theoretical possi-
bility as one of us (DJT) heard of a social science study in England that used
allocation based on National Insurance numbers, and later it transpired
that those recruiting the participants appeared not to have followed the
allocation as they should have done, which would not have happened if
concealed randomisation had been used. Because of the problems of non-
random allocation outlined above it is important that, if at all possible,
concealed randomisation is undertaken when forming comparison groups.

4.4 True randomisation

Randomisation ensures that, on average, the two or more groups that
are formed are similar in all variables that will affect outcome. A quite
common mistake is to confuse random allocation with random sampling.
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Random sampling is used to make inferences about characteristics of a
sample to the general population. If, for example, one wished to know
what the average height of 14-year-old children is in the population,
then a random sample of 14-year-olds could be identified and measured.
As long as this sample is of a sufficient size then the average height of
14-year-olds could be estimated with sufficient precision, which avoids
the need to measure all the 14-year-olds in the population. Thus, a ran-
dom sample has high external or ecological validity: that is inferences
about the sample can be extrapolated to the general population. In con-
trast, random allocation makes no statement about the external validity
of the sample population to the general population.

Random allocation is important for internal validity, i.e., whether the
results are valid within the sample chosen. If we use other methods of
allocation we cannot be sure that selection bias has been eliminated and
the results are valid for the intervention.

As mentioned above, random allocation eliminates selection bias
(Cook and Campbell, 1979), which is the main threat to internal valid-
ity. It is present in many non-random methods of forming comparison
groups and occurs when the groups have one or more characteristics
that differ and are associated with the outcome of interest.

Random allocation is a simple, elegant concept. Allocation of individ-
uals to two or more groups at random will produce groups that have, on
average, the same characteristics as each other, for example the same
range and spread of socio-economic group, or age, or eye colour, etc.
Importantly all the known and unknown characteristics that could affect
outcome are unbiasedly present in all groups. The presence of all vari-
ables that could affect outcome, known as confounders or in statistical
parlance, covariates, in all groups will cancel out their effect in the
analysis. Nevertheless, there will, by chance, be some variables that are
not exactly the same in both groups. However, usually, these variables
will not affect outcome.

4.5 How to randomise

The practicalities of randomisation will vary with respect to how partici-
pants are recruited into a trial. Many trials use ‘trickle’ or ‘sequential’
recruitment. Patients arriving at a clinic, for example, are asked to take
part in the trial. Similarly, in a crime and justice trial of offenders, par-
ticipants are recruited as they arrive at a prison. Alternatively partici-
pants can be randomised in one batch or block. Children attending a
school can be recruited at the same time and then randomisation can be
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undertaken simultaneously for all the participants. Whilst the principles
of randomisation are the same for both types of recruitment allocation,
when recruitment is ongoing this tends to be more expensive, as secure
systems for allocation need to be maintained to ensure fidelity of ran-
domisation over the period of time recruitment takes place.

It is sometimes the case that unequal group sizes are required. For
example, we might wish to have twice as many participants in one
group compared with another. This would then demand a probability of
allocation to one group of one-third, and for the other a probability of
two-thirds. An unequal probability does not lead to a biased allocation,
as the resulting groups, despite being of unequal size, will contain the same
proportion of people with different characteristics as groups of equal size.

There are several different approaches to undertaking randomisation.
The most robust method, in our view, is simple randomisation.

4.6 Simple randomisation

The simplest form of randomisation is to use a random number table or
computer generated list of random numbers to make the allocation. The
strength of simple randomisation is its very simplicity: it is difficult for
it to go wrong. More complex randomisation methods are disadvan-
taged by the fact that they can suffer technical bias (an inadvertent error
can result in biased allocation). This potential problem should not be
under-rated. Simple randomisation is very easy to undertake. Most com-
puters contain a program that produces random numbers (e.g., spread-
sheet program or statistical software). Alternatively, most statistical
textbooks contain lists of random numbers. If we were planning a two-
armed trial with equal numbers then we could simply produce a random
list of numbers, assign participants to the numbers and decide whether
those assigned to odd numbers comprised the intervention or the con-
trol group. For example, in a trial to test the efficacy of a computer
assisted instruction program in a prison setting, Batchelder and Rachal
(2000) described the procedure for randomly assigning inmates to either
the experimental or the control group.

A random digit table was used to assign all inmates who entered the
program to either the experimental group or a control group. As each
inmate entered the program, he was matched with the next consecu-
tive number on the random digit table. If the number was even, the
inmate was assigned to the control group; if the number was odd he was
assigned to the experimental (CAI) group. (Batchelder and Rachal, 2000)
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Although this approach is fine in theory, it is probably best to use a
secure system to prevent whoever is responsible for the allocation from
potentially subverting the process.

Simple randomisation is not without perceived problems, which is
why many researchers use alternative approaches. When the overall
sample size is small, one problem is that the two groups may be numer-
ically unbalanced. In a trial of, say, 30 individuals it is very unlikely that
simple randomisation will produce exactly two groups of 15 each. If simple
randomisation produces two groups of, say, 20 vs 10 then the power of
the study will fall by 5 per cent. This in itself would not be of great con-
cern, but with small sample sizes simple randomisation can produce
allocation schedules of greater imbalance, which will result in signifi-
cant loss of power (e.g., 23 versus 7). This could be a particular problem
in cluster, group or class randomised trials. In these instances, groups of
individuals (e.g., schools, GP practices, prisons, hospital wards) are ran-
domly allocated. Usually the number of clusters tends to be small and
consequently this risks large chance imbalances which will reduce the
statistical power of the study.

Even when the sample size is large enough to make any numerical imbal-
ance very slight compared with the total sample size of the trial, simple
randomisation can still lead to an imbalance between groups in an import-
ant key variable. For example, phonemic awareness (PA) is known to be an
important predictor of outcome in literacy interventions to improve read-
ing ability (Ehri et al., 2001). Simple randomisation could lead to a large
imbalance in two groups of students randomised in a reading intervention
trial, with an imbalance in the numbers of children in each group with
‘high’ and ‘low’ abilities in phonemic awareness. If most children with low
phonemic awareness abilities were allocated to one or other of the groups
then the groups would be unbalanced in an important factor by chance
(chance imbalance) and this could affect the outcome of the experiment.

In trials that recruit from many different centres, where there may be
only a few participants per centre, it is often thought to be important to
include participants from each centre in the control and intervention
treatments. If, for example, we have a number of centres that recruit
only four or five participants, the use of simple randomisation could
lead to all of the participants in those centres receiving only one treat-
ment. If this occurs it then becomes impossible to control for any possible
centre effects on outcomes. Sometimes simple randomisation results in
a long string of allocations that favours one of the groups. If a trial is
recruiting slowly, for instance, and we have, by chance, a string of allo-
cations over a summer period that favours one of the groups, we may
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not be able to balance for any seasonal effects and there will be a poten-
tial for the introduction of temporal bias (insufficient participants will
be available to be recruited to end the chance string of allocations favour-
ing one group).

A similar problem can occur when we want to preferentially ran-
domise in favour of one group. If, for instance, we are using unbalanced
randomisation in order to limit or increase access to a service under evalu-
ation, simple randomisation may lead, on occasions, to the service being
under- or over-utilised, which may interfere with the practical arrange-
ments for conducting the study.

Another perceived problem is that using simple randomisation may
result in some ‘cosmetic’ imbalances. Thus, the sample size will not be
exactly equivalent and there may be some differences between the groups.
All of these cosmetic problems are not real issues and can be corrected
quite easily in a regression analysis. However, many researchers worry
that because of chance differences their trial may not be considered to be
methodologically rigorous. These problems can be reduced through the
use of other randomisation techniques that restrict the randomisation.

4.7 Blocked randomisation

Blocked randomisation is one of the most widely used methods to reduce
the possibility of chance imbalances. If we assume that a variable is a very
important predictor of outcome we would like to have equal propor-
tions of participants with high and low values of the variable in all treat-
ment groups. To ensure that there are equal proportions we use a process
known as stratification. To do this we generate two or more randomisa-
tion schedules using random blocks of numbers. The smallest block is
usually a block of four. In a two-armed trial this produces the following
allocations: ABAB; AABB; BABA; BBAA; ABBA; BAAB. The randomisation
procedure is as follows. A block of four allocations is randomly selected
from the six possible sets of blocks, the next block is selected randomly,
and so on until there is a long enough string of blocks to allow all the
possible participants to be randomised.

In Table 4.1 we can see an example of blocked allocation. If a partici-
pant has high value he or she would be allocated using blocks in the first
row; however, if the participant has a low value he or she would be allo-
cated according to the blocks in the second row.

In the blocking schedule above with 24 participants evenly divided
between high and low values we could guarantee that there would be
6 participants with a high value in group A and 6 participants in group B.
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Table 4.1:  Stratified randomisation by blocking

Variable Allocation schedule

(e.g., age)

High A A B B A B A B A B B A
Low B B A A A A B B B A A B

We can stratify by more than one variable, although a problem with
increasing the number of stratifying variables is that the number of
pathways rapidly increases and can become unmanageable. For example,
in a trial evaluating a school drop-out prevention intervention, Sinclair
and colleagues (2005) sought to stratify on six variables (disability, eth-
nicity, eligibility for free school meals, gender, adult with whom youth
resided and high school). In a two-armed trial this would result in 128
different categories! By stratifying in this manner the trialists increased their
chances of having large numerical imbalances. Therefore, it is advisable
not to use more than two stratifying variables. Note that stratified ran-
domisation must also use blocked randomisation. If we stratify groups
and then use simple randomisation, this results in the same outcome as
using simple randomisation without stratification. Failure to block along
with stratification is not uncommon. For example, in a trial published in
the Lancet, Durelli (2002) and colleagues stated:

Randomisation was done centrally by the coordinating centre.
Randomisation followed computer generated random sequences of
digits that were different for each centre and for each sex, to achieve
centre and sex stratification. Blocking was not used.

Other examples of this misunderstanding of the nature of stratified ran-
domisation can be found in Hewitt and Torgerson (2006).

By using blocked randomisation the overall group sizes can never be
greatly unbalanced within the strata. Many people mistakenly think
that the main reason for stratified or ‘constrained’ randomisation is to
maintain equivalent group size. If we use blocked randomisation our
groups cannot be unbalanced more than by half the block size within
the strata. So, for example, when using a block of four, one group can-
not be larger than the other than by a maximum of two participants, if
we do not stratify. If we stratify on several variables then we can get
numerical imbalances across the trial in total. This occurs because, by
chance, we might have the blocks in several strata starting on the same
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allocation. If some sites do not recruit many participants then they may
only use the first one or two sequences from the block. For instance,
Klaber-Moffett et al. (1999) used blocked randomisation with block sizes
of four, yet their trial was numerically unbalanced by nine participants.
This was because they stratified by GP practice and there were 87 GP
practices. Consequently, by chance, many of the practices that had
recruited only one or two patients must have started their randomisa-
tion using blocks which started with the same allocation. However,
within the stratifying variable we cannot be unbalanced by more than
half the block size.

Simple randomisation, particularly with a total sample size of above
100, is very unlikely to lead to large numerical group imbalances and, as
explained previously, even an imbalance as large as 2:1 only has a small
effect on statistical power. More importantly, the main reason for
restricted randomisation is to maintain balance in important covariates.
If we are stratifying the randomisation by a ‘high’ or ‘low’ value then the
proportions of participants with a ‘high’ value will be exactly the same
in both groups, which simple randomisation cannot guarantee.

There are significant disadvantages with using restricted randomisa-
tion (Hewitt and Torgerson, 2006). Firstly, it adds complexity to the
process and can increase the chances of human or technical error lead-
ing to biased allocation. Second, if the same block sizes are used this can
lead to predictability, which in turn can lead to bias. Predictability can
lead to subversion bias, which means that a researcher can allocate par-
ticipants preferentially into one group or another. We discuss subversion
bias in more detail in Chapter 5. However, small block sizes can lead to
predictable allocation. For example, if the block size is four we can
always predict which allocation will be the fourth in a series. Indeed, we
will often be able to predict the last two allocations in a block if the first
two are allocated into one group. To reduce this latter problem, different
block sizes are commonly used and randomly picked so that subsequent
allocations cannot be predicted. Also, to reduce predictability, as well as
randomly choosing different block sizes, unequal block sizes will occa-
sionally be inserted into the list of blocks to try and make it even more
unpredictable. Even with different, randomly assigned, block sizes, allo-
cations can sometimes still be predicted. This is because blocking will
lead to group sizes that are very similar. If one keeps track of the group
sizes, once an imbalance starts to appear, then one can be fairly confi-
dent that the probability of a subsequent assignment to the smaller group
will be high. Also, if constrained randomisation is used, then simply guess-
ing that the next allocation will be the opposite of the previous allocation
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will always lead to an increased chance of being correct. Scheduling a
participant to that assignment could then lead to biased groups. This
problem is only really dealt with if we use large block sizes; however, if
block sizes increase too much then this negates any benefit of restricting
the allocation and we may as well have used simple randomisation.
Whilst blocked randomisation will lead to balanced groups on the
appropriate covariate (e.g., gender or age), in trials with a sample size of
greater than about 100 it is probably better to use simple randomisation
and stratify statistically at the end of the trial (Hewitt and Torgerson,
2006). This is because statistical analysis should usually take into account
the stratifying variables. Blocking the random allocation only improves
the power if the study is very small (Rosenberger and Lachin, 2002).
Consequently, in our view it is better not to increase the risk of subver-
sion by blocking, and deal with important covariates in the analysis.

4.8 Matched randomisation

A method of allocation often used by psychological and educational
researchers is ‘matched’ randomisation. In matched randomisation par-
ticipants are formed into pairs (or triplets in a three-armed trial) on the
basis of one or two important covariates. For example, a child might be
paired with someone of a similar age and the same gender. Once the par-
ticipants have been paired, one of each pair is randomly allocated to the
intervention group. This process leads to stratification on the pairing
variable, which means the groups will be exactly balanced in terms of
that variable. Because stratification is very precisely obtained by using
pairing this eliminates most of the extraneous variation due to that con-
founder and leads to more precise statistical estimates of effect, which in
turn requires a smaller sample size. There are a number of disadvantages
to the method, however. First, if there are not exactly equal numbers of
participants then at least one potential participant will be lost to the
study. This is particularly the case if one is pairing on more than one
variable: say gender and age. It may be possible to match two people on
approximate ages, but they may not also be matched on gender. This
again will lead to a loss in sample size. Second, if the variable that the
participants are paired on has an interaction with the treatment (that is,
treatment is much better or worse within different categories of the
matching parameter) pairing eliminates the possibility of undertaking a
subgroup analysis. Thirdly, in some circumstances pairing can lead to
other reductions in statistical power, particularly in cluster trials when
the numbers of pairs are relatively few. Finally, matched randomisation
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cannot be used for studies that use trickle recruitment as obviously we
need to identify a number of participants in advance to enable us to
make up a pair or triplet.

4.9 Pairwise randomisation

Another form of randomisation that does not have the disadvantages of
restricted randomisation but allows numerical balance is ‘pairwise’ ran-
domisation (Daniels et al., 2004). As noted above, we might want to
achieve numerical balance in the trial as we recruit, not just for reasons
of power but to avoid other problems, such as temporal bias, and to
allow better prediction of treatment resource utilisation. In some instances
treatment resources are very scarce and both simple and blocked ran-
dom allocation will, at times, under-utilise treatment resources and
sometimes over-use them. For example, in a surgical trial treatment slots
may have to be arranged some time in advance. Simple randomisation
may lead to either too many or too few patients being allocated to a sur-
gical treatment. One way around this is to recruit participants in pairs.
Once two eligible participants have been recruited one is randomised to
the intervention and the other is allocated to the control group. Note
this is not paired randomisation as described above. We are not attempt-
ing to match the pairs on any characteristic. We are simply randomising
in pairs for practical reasons to ensure that treatment resources are used
to their maximum efficiency. Therefore, the two participants identified
may have very different characteristics to each other, unlike when using
matched randomisation. This approach to randomisation does not allow
stratification by an individual covariate, although it does allow stratifi-
cation by centre. Therefore, it is a safe way of allowing centre stratification;
it prevents temporal bias, and also allows for efficient utilisation of treat-
ment resources.

We might extend this idea to the use of unequal allocation and iden-
tify three potential participants and then randomly select one to go into
a group where we wish to ensure complete resource utilisation. This
approach has an advantage over blocked randomisation in that it is as
unpredictable as simple randomisation. Consequently it preserves some
advantages of restricting the randomisation without the downside of
increasing the predictability of the next assignment. On the other hand,
a drawback to this approach is that if the trial is recruiting slowly then
some time may elapse between the first participant giving consent and
then recruiting a second individual to the study. This may make it infeas-
ible for some treatments that need to be delivered as soon as a participant
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presents to the recruiting researcher. We might, however, use a combin-
ation of pairwise and simple randomisation if there is a danger of this
occurring. For instance, when we have two or more participants avail-
able for randomisation we might use a pairwise approach; however, if
we only have one participant they could be allocated using simple ran-
domisation. This compromise can lead to predictable allocation in the
sense that we can predict that available treatment resources will be effi-
ciently used, but the predictability of an individual allocation is equiva-
lent to simple randomisation.

There are other types of randomisation, such as adaptive randomisa-
tion, but these are probably less frequently used than those methods
described above. In adaptive randomisation the allocation schedule is
altered as the trial proceeds in order to correct any numerical or covari-
ate imbalances that arise during recruitment. The most extreme form of
this, and it is not strictly randomisation, is minimisation.

4.10 Minimisation

The main non-random method of forming comparable groups, which
some have claimed is superior to randomisation, is minimisation (Treasure
and MacRae, 1998). Minimisation is an alternative to stratified random
allocation in that it prevents numerical and covariate imbalance. Usually
a computer program is required to implement minimisation. The process
is as follows. The first five or ten participants are allocated at random.
Thereafter, as the groups are built up, minimisation deliberately allo-
cates participants to a group depending on the characteristics of those
already allocated. As an example let us consider a cluster-randomised
trial of the use of incentives for adult learners (Brooks et al., 2008). In
this trial 29 classes were randomised with the intervention group receiving
a payment to attend evening classes, whilst the control group received
no incentive. In Table 4.2 28 classes have been allocated using minimi-
sation. In this instance the trialists wanted to be make sure the trial
groups were balanced on: type of institution (FE or other); location
(rural or urban); size of class (8+ or <8); and prior use of incentives.
The twenty-ninth class to be randomised had the following character-
istics: it was not an FE college; it was in an urban area; it was large; and
previous incentives had not been used. Minimisation will now allocate
this class to the group that has the lowest score on these characteristics.
In Table 4.2 we sum up the characteristics of the existing allocated classes.
Thus, the figures in bold represent the existing totals of the classes already
allocated. These are summed and the smaller total, in this case 33, for the
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Table 4.2: FExample of minimisation

Covariate Intervention Control

FE

Other
Rural
Urban
8+

<8
Incentive
No

Sum
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Class 29 = not FE, urban, large, no previous incentives = for
Intervention 8 + 9 + 5 + 12 = 34 for Control 6 + 8 + 6 + 13 = 33.

control group receives the twenty-ninth class. Had the totals been the same
then we would have allocated the twenty-ninth class by randomisation.

Minimisation is not a random process; therein lies one of its weak-
nesses — it can lead to predictability. If someone wished to subvert the
allocation schedule they could keep a record of the groups’ characteris-
tics (as indeed the computer program must) and, on the basis of a poten-
tial participant’s characteristics, predict their likely allocation. To avoid
this some researchers introduce a random element to minimisation.
Instead of an individual always being allocated to the group with the
lowest score, a probability (say 0.80) might be assigned so that they still
might be allocated to the group with the higher score. The other poten-
tial problem of minimisation is its complexity, which can lead to tech-
nical problems (e.g., more complex computer programming can increase
the possibility of programming errors).

4.11 Practical randomisation

Randomisation can be achieved through tossing of a coin, which has
been used extensively in the past. However, this method does not work for
trials that require more than two groups or for trials that need one group to
be larger than the other, and the method is easily subverted. Alternative
methods include using random number tables: these are published in
most statistical textbooks; also many statistical packages produce ran-
dom number lists.

It is important, however, that the process of randomisation is con-
cealed from those entering participants into the trial. This is because
there is good evidence to show that researchers and others can and will
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subvert the allocation sequence, which produces biased groups. The trad-
itional method of preventing foreknowledge of the allocation sequence
is to use sealed, sequentially numbered, opaque envelopes. When a par-
ticipant has agreed to take part in the study, the person enrolling the
participant opens a sealed envelope with the allocation. This method
has recently fallen into disrepute, as it is not tamper proof. A more rig-
orous method is to use forms of distance randomisation where someone
completely separate from the recruitment process is contacted to give
the allocation to the researcher. Thus, for example, the researcher will
contact the randomisation service, often by telephone but it can be by
fax or through the internet, and give the key characteristics of the par-
ticipant to be randomised. The researcher undertaking the randomisa-
tion then produces the allocation and informs the participant recruiter
of the allocation. This process makes it more difficult to tamper with the
allocation schedule than by simply using envelopes.

As an aside we note that ‘random’ numbers produced by a computer
are not truly random. They are ‘pseudo-random’ as the computer has to
use some deterministic mechanism within it, such as its clock speed, to
produce the random numbers. However, in order to try and predict the
allocation sequence one would need very detailed knowledge of the
individual computer, consequently such computer generated pseudo-
random numbers are generally held to be as good as true random numbers.

Distant randomisation methods need not be expensive. For example,
a small trial concealed allocation from researchers undertaking partici-
pant recruitment by asking them to telephone the local hospital switch-
board where the switchboard operator wrote down the patients’ names
and details in a book and pulled out an allocation from an urn under her
desk. Similarly a trial in the crime and justice field asked staff who were
allocating offenders to their groups to telephone a secretary at another
department who held the randomisation list and she revealed the allo-
cation only after she had noted the details of the study participant (Davis
and Taylor, 1997).

The first, and most crucial, step when randomising is to ensure that a
third party (independent of the research team) undertakes the random-
isation. In Chapter 5 we discuss at length the problem and potential sub-
version of the randomisation process, which is a threat to the integrity
of the trial. Consequently it is important to identify someone who will be
considered independent by a critical referee. World-wide there are many
providers of independent randomisation services. If you select such a ser-
vice, ensure that a backed-up computer service is provided which allows
an audit of the randomisations at a later date if this proves necessary.
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After identifying a secure randomisation procedure, the next step is to
decide on the kind of randomisation. If the trial is large we would sug-
gest the use of simple allocation, as described previously. If a restricted
form of randomisation is used, the variables for stratification need to be
selected. In a multi-centred trial it is usual to choose ‘centre’ as a strati-
fying variable. In other words, a separate block of randomisations is pro-
duced for each centre. This is because ‘centre effects’ (e.g., differences in
skilled personnel, differences in types of participants) may affect out-
come. However, stratifying by centre is probably best avoided as this
increases the possibility of sabotage, by increasing the chance that the
block size used in the allocation will be deciphered. On the other hand,
one could use pairwise randomisation, which would control for centre
effects but eliminate the possibility of subversion.

The choice of stratifying variables should be driven by knowledge of
what is an important predictor of outcome. Pre-test score, for example,
is usually a very powerful predictor of post-test values. Therefore, it would
seem sensible to stratify the randomisation on the pre-test variable. Note,
however, if a pre-test score is chosen it must be calculated before the ran-
domisation takes place, and sometimes pre-test scores can be complex and
time consuming to produce, which may not allow sufficient time for use as
a stratifying variable. If it is possible to collect pre-test data, then setting up
two blocking streams for above and below the median will allow the allo-
cation to be balanced on pre-test scores. Note, it is important to measure
pre-test variables before random allocation if at all possible to avoid sub-
version. As noted previously, it is possible to stratify on more than one vari-
able but this will increase the complexity of the task. In a trial that involves
trickle or sequential recruitment it is important to keep the block sizes
concealed from those recruiting the participant, to reduce the risk of bias.

4.12 Regression discontinuity

In this chapter we have argued that randomisation is the best method
for eliminating selection bias. Another approach to dealing with selec-
tion bias that, in theory, can produce unbiased estimates is the regres-
sion discontinuity design (Cook and Campbell, 1979; Shadish et al.,
2002; Linden et al., 2006). In a regression discontinuity design, partici-
pants are selected for the intervention on the basis of some known and
measurable variable. For instance, in some states in the USA children who
fail to achieve a certain threshold score in tests can either be retained — that
is kept behind - or obliged to attend summer schools (Jacob and Lefgren,
2004). In this instance the threshold that determines eligibility for summer
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school or being retained is a standardised test. Similarly, some income
supplements may be given to families that fall below a certain threshold
income level and not given to those above a threshold. Clinically we might
give a new blood pressure drug to patients who have blood pressure
above a certain threshold where it is deemed they have hypertension and
if they fall below this threshold they will get no anti-hypertensive treat-
ment. If we then follow up a cohort of people, including those above and
below the threshold, we can plot outcomes against initial baseline values.
If the intervention is ineffective then there will be a linear relationship
between baseline measurement values and outcomes. Should the inter-
vention be effective, however, then at the threshold point we would expect
to see a break or ‘discontinuity’ in any regression line. For example, in
the evaluation of attendance at summer schools or being retained using a
regression discontinuity design (Jacob and Lefgren, 2004) the performance
of children, on a post-test reading score, was plotted against the pre-test
reading score, which was used to select children for the summer school.
If the summer school had an effect on reading acquisition we would expect
to see a break in the regression line when plotting the pre and post-test
reading scores. Using this approach Jacob and Lefgren (2004) concluded
that summer schooling did improve literacy acquisition by children.

Regression discontinuity methods can be combined with an RCT to
support a causal relationship. The method can be used when it is not
ethical or practical to withhold an intervention. Nevertheless this design
is inferior to an RCT in a number of aspects. First, even if it is imple-
mented perfectly we require significantly greater numbers of partici-
pants compared with an RCT as the power of the design is much lower.
Even if the threshold chosen is in the median of the distribution we
require approximately 2.75 times the sample size to achieve the same
statistical power as an RCT (Cook and Wong, 2007).

A second potential problem with the design is that researchers or prac-
titioners must comply with the threshold point, or else the break becomes
‘fuzzy’ and may be indistinguishable from random noise in the data.
However, one could argue that this is a similar problem encountered with
the RCT, which only works if people respect the random allocation.
Finally, there may be a ‘natural’ discontinuity at the same point chosen by
the researchers and this could potentially confound the results.

4.13 Discussion

Random allocation or minimisation creates comparable groups. Other
methods of forming comparison groups, apart from the regression



42 Designing Randomised Trials

discontinuity approach, are susceptible to bias at the time of recruitment
to the study. Non-randomised trials are probably more prevalent in social
science research than randomised studies. The former will always be sus-
ceptible to selection bias and consequently their results need to be treated
very cautiously.

There are a number of approaches to randomisation. In our view, as
long as there is a reasonable sample size, the best method is simple ran-
domisation. Given sample sizes of over 100, it will produce identical
results when combined with regression analysis, compared with strati-
fied randomisation. Nevertheless, certainly within health care research,
this is a minority viewpoint. In a review of 232 trials published in major
medical journals Hewitt and Torgerson (2006) found that only 9 per
cent (21) appeared to have used simple randomisation: all of the remain-
ing trials used some form of restricted randomisation or did not clearly
describe (34 per cent) how they randomised. Interestingly, there was no
relationship between the size of the trial and whether or not the trialists
used restricted randomisation. From a statistical theoretical viewpoint
we would expect larger trials to be less likely to use restricted random-
isation; however, this was not the case.

Restricted allocation methods do have a role in specific circumstances,
such as when relatively few participants can be allocated or when
recruitment might be slow and sporadic. For small samples, such as clus-
ter trials, minimisation is a useful alternative to randomisation. Note,
however, for minimisation some drug regulatory authorities do not
recognise this as a legitimate method of forming unbiased groups.

Randomisation will not ensure that there is complete balance between
the groups within a single trial. In a population of RCTs there will be bal-
ance. Randomisation gives us the best method of ensuring that the vari-
able that we do not know about or cannot measure will be balanced
between the groups. Because an individually randomised trial might, by
chance, be unbalanced on a major variable it is best to use a systematic
review of randomised controlled trials to inform policy and practice
(Torgerson, 2003) as this allows the occasional trial that is unbalanced —
by chance - to be balanced out by other trials included in the review (see
Chapter 16). Although random allocation deals with the problems of
selection bias, regression to the mean and temporal effects, it can be sus-
ceptible to the introduction of bias after allocation has occurred. In the
next chapter we look at these. However, note that most of these threats
to validity also occur in non-randomised studies, which are also subject
to baseline selection bias. In the next chapter we discuss in more detail
sources of bias that can affect the RCT.
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4.14 Key points

Randomisation ensures internal validity, not external validity. Random
allocation is not the same as random sampling.

For sample sizes exceeding 100, simple randomisation followed by
regression analysis is virtually equivalent to restricted randomisation
and is less complex.

For small trials, particularly cluster randomised trials, restricted ran-
domisation followed by regression analysis will produce more statistical
power than simple randomisation.

In small trials minimisation may be better than blocked randomisation.
When trials are not possible the best alternative is the regression dis-
continuity design.
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Sources of Bias Within
Randomised Trials

5.1 Background

A careful look at randomized experiments will make clear that they
are not the gold standard. But then, nothing is. And the alternatives
are usually worse. (Berk, 2005)

Bias can give an incorrect estimate of effect; therefore, it is essential to
minimise the threat of bias, and this is the main reason for using ran-
domisation. Three main forms of bias that can affect non-randomised
studies are: selection bias, temporal changes and regression to the mean
effects. The use of random allocation, or a similar method, minimises
these threats to the internal validity of a study. Nevertheless, other
forms of bias can occur after randomisation, and these can threaten the
integrity of the trial. It is important to be aware of and acknowledge
potential for such biases, and, as far as is possible, to minimise their
occurrence and then take steps to deal with them adequately. Most of
these biases are forms of selection bias introduced at the time of ran-
dom allocation or afterwards, although most of them are not unique to
randomised trials: they occur as frequently, if not more so, in non-
randomised trials. In this chapter we consider the main sources of bias
that threaten randomised controlled trials.

5.2 Subversion or sabotage bias

We know that some researchers and practitioners have subverted the
randomised trial in which they were participating. There are many possible
reasons for this, some of which we have mentioned earlier. One proba-
ble reason is simply ignorance. The practitioners or researchers may not

44
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realise that non-adherence to the randomisation sequence can potentially
render a trial uninterpretable and/or produce misleading results.

Subversion of a randomised trial can occur in one of two ways. First,
researchers can allocate participants in a non-random fashion to the
groups, which can lead to bias. Subversion of health trials has been
reported from soon after the RCT was used in this field. Second, the
researcher, clinician, teacher or other worker can implement the inter-
vention with the control participants, thereby obliterating any differ-
ence in effect. For example, as mentioned in Chapter 1, a trial in the late
1940s investigated the value of giving premature babies oxygen. At that
time oxygen supplementation was widespread, but some researchers
suspected a link between this unevaluated treatment and an increase in
blindness among premature babies, so a trial was undertaken. A number
of the nurses involved in the study administered oxygen to the control
group babies, thereby delaying the finding that increased supplemental
oxygen to premature babies does, indeed, cause blindness (Silverman,
2004). The nurses did this because they mistakenly believed that the
babies would benefit from the oxygen supplementation, and thought
that it was unethical of the researchers to randomly deprive them of the
oxygen supplementation.

Some studies have demonstrated that in trials where there is a poten-
tial to subvert the randomisation schedule different results are obtained
from those in which there is no possibility, or only a small possibility of
subversion (Schulz et al., 1995; Schulz and Grimes, 2005).

Typically, trials are subverted because a ‘novel’ method is ‘known’ to
be more effective than a standard method (e.g., oxygen for premature
infants). An empirical demonstration of subversion bias was reported in
1999 by the MRC Laparoscopic Groin Hernia Repair Group. In a surgical
trial 227 patients were allocated using sealed envelopes; 99 of these had
to be excluded (44 per cent) due to the possibility that the randomisation
envelopes had been opened in advance of randomisation. An earlier
report of a multi-centred surgical trial showed that three separate clinical
centres, out of five, subverted treatment allocation. Thus, for the three
centres, older patients were deliberately allocated to the control condi-
tion (i.e., the mean ages for three centres were: 57 years vs 72 years,
p < 0.01; 33 vs 69 years, p < 0.001; 47 vs 72 years, p = 0.03 for experi-
mental and control conditions respectively) (Kennedy and Grant, 1997).
In this instance, it appears that several sealed envelopes were opened in
advance, and older patients were allocated to the control treatment.

In a survey of 25 clinicians who were recruiting participants to trials
that used restricted or blocked allocation, four (16 per cent) admitted to
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keeping a ‘log’ of previous allocations, which could then be used to help
to guess future allocations (Brown et al., 2005). Although 16 per cent
does not seem a great proportion we must look at this in the context
that most trials are designed to avoid a ‘false positive’ rate of 5 per cent.
Thus, in 100 well-designed and rigorously conducted trials, five will sug-
gest that the intervention works, when in truth it does not. On the other
hand, if 16 per cent of our trials are being subverted such that the sub-
version favours a particular treatment, and then of the remaining 84 per
cent another 4 per cent are false positives, we can see that about 20 per cent
of our trials may have false positive results, rather than the 5 per cent we
originally anticipated. Therefore, if subversion of randomisation is prac-
tised on a scale of 16 per cent of all trials, this may produce very large
numbers of false positive or false negative results. The problem of poten-
tial subversion or sabotage is very worrying and all efforts must be made
to design systems to avoid it occurring.

A review by Hewitt and colleagues of all trials published in four major
medical journals in 2002 found more evidence for subversion bias (Hewitt
et al., 2005). The authors examined all the retrieved RCTs and categorised
them into three groups by the adequacy of allocation concealment: ade-
quate, inadequate or unknown. Trials with adequate concealment had,
on average, higher p values than trials that were inadequate or unknown.
This suggests that some of the trials in the inadequately concealed group
were subverted such that participants with characteristics that pre-
dicted poorer outcomes were placed in the control groups (Hewitt et al.,
2005).

This association (it is not proof) might lead one to believe that, where
allocation can be subverted, it is sometimes done to favour the treat-
ment group. An alternative explanation for this phenomenon, however,
is that trialists who use inadequate allocation methods are more likely to
evaluate interventions that are effective compared with those who use
the most robust approaches to random allocation.

In the review by Hewitt and Torgerson (2006) some instances were
reported where the allocation methods did not match the data shown in
the report of the trial. This included a study reported in the British
Medical Journal (Kinley et al., 2002). In this study the authors claimed to
have used block randomisation:

This was a block randomised study (four patients to each block) with
separate randomisation at each of the three centres. Blocks of four
cards were produced, each containing two cards marked with ‘nurse’
and two marked with ‘house officer.” Each card was placed into an
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opaque envelope and the envelope sealed. The block was shuffled
and, after shuffling, was placed in a box.

Recall how in Chapter 4 we illustrated that a trial that uses blocked ran-
domisation cannot be unbalanced by more than half the block size
within its stratifying variable. In this instance the trialists were using a
block of four and stratifying by centre. Therefore, each centre should
have had, at most, a numerical disparity of only two participants. Note
that, in this instance, two of the three centres had a numerical disparity
of 11, suggesting that either blocked allocation was not used or that the
allocation sequence had not been adequately followed (Table 5.1).

Interestingly, an earlier report of the same study gave a slightly differ-
ent account of how randomisation was undertaken:

Randomisation was accomplished using a balanced block design
(four patients to each block) with a separate randomisation process at
each of the three centres. A separate series of consecutively num-
bered, opaque sealed envelopes was administered at each research
centre. (Kinley et al., 2001)

Note that, in this instance, the envelopes were consecutively numbered.
This description is difficult to reconcile with the subsequent description
of shuffling the envelopes as described in the report; otherwise the
envelopes would have been out of sequence.

A similar problem occurred in another trial of using dietetic assistants to
improve the outcome of patients with hip fracture (Duncan et al., 2006):

Randomisation was by sequentially numbered, opaque, sealed envel-
ope method in blocks of 10, prepared by a member of staff not
directly involved in the trial. (Duncan et al., 2006)

In this instance the maximum numerical disparity between the two

groups should have been only five. However, 165 participants were allo-
cated to the control group and 153 were allocated to the intervention

Table 5.1: Numerical disparity in a blocked randomised trial

Southampton Sheffield Doncaster

Doctor Nurse Doctor Nurse Doctor Nurse
500 511 308 319 118 118
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group. This could not have happened if the authors had undertaken the
allocation method that they described in their methods section.

Health care researchers are not alone, however, in having problems
with their trials. Evidence of problems in health care trials may be more
apparent because many health journals now insist that authors report
details of the allocation procedures, which allows readers to note such
discrepancies (as above). However, in a non-health context, Boruch
(1997) cited a trial of an intervention to reduce or eliminate domestic
violence, where it appeared that police officers responsible for the
assignment may have violated the randomisation procedure.

An example of a discrepancy in randomisation in an educational trial
is from a study by Baker et al. (2000). In this study evaluating the use of vol-
unteers to help children to read, randomisation was reported as follows:

Pairs of students in each classroom were matched on a salient pretest
variable, Rapid Letter Naming, and randomly assigned to treatment
and comparison groups.

It appears from this sentence that the authors used paired or matched ran-
domisation, which should have ensured that there were exactly equal
numbers in both groups. However, a little later in the paper the authors
stated:

The original sample — those students were tested at the beginning of
Grade 1 - included 64 assigned to the SMART program and 63
assigned to the comparison group.

Clearly if paired randomisation had been used then there should have
been exactly equal numbers in both groups. As with the previous examples
the authors could not have used the randomisation process they described
in their methods, or if they did, they must have dropped one member of
the pair at the beginning. None of the examples quoted above demon-
strates that the trials were actually compromised, they only demonstrate
that the authors were not clear about how the random allocation process
was undertaken, or that they did not follow precisely the allocation
method described.

To avoid the potential problem of subversion of randomisation, the
procedure needs to be separated from the researcher who is recruiting
the participants. Recently, many health care trials have used a dedicated
telephone randomisation service, whereby the researcher undertaking
recruitment telephones the independent randomisation service for the
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allocation number. The randomisation service notes down the details of
the participant and then gives the allocation. Whilst using a telephone
randomisation service usually is best, even this approach can have
potential problems. A colleague once remarked that when working on a
trial using telephone allocation the operator offered to give the next
four allocations to avoid the trial co-ordinator having to telephone back.
Clearly, in this instance, despite using a telephone system, the study was
not immune from potential problems of subversion. Another example
of possible subversion of telephone randomisation occurred in an evalu-
ation of post-operative care for patients with fractured neck of femur
(Turner et al., 2006). This study used blocked telephone randomisation.
The authors noted that when two or more patients were available for
randomisation, ‘staff had the opportunity to influence the order in
which they went to theatre’ (Turner et al., 2006). This could only be
done if the staff had broken the block sequence and therefore could pre-
dict the allocation order. If simple randomisation had been used, this
problem should not have occurred.

The issue of possible subversion has been recognised as an important
validity threat in disciplines other than health care research. For example,
in an RCT evaluating a police and social worker intervention to prevent
domestic violence, distance randomisation was explicitly used to:

protect overrides of group assignment by the staff, who might have a
concern that some cases receive home visits regardless of the out-
come of the assignment process. (Davis and Taylor, 1997)

Therefore, once a domestic violence incident had been reported, a pro-
ject worker telephoned the research department and gave details of the
case to a research secretary who then revealed the allocation.

One of the strengths of randomisation is that, when properly under-
taken, it leads to unpredictability, and, if it is separated from the person
undertaking participant recruitment, subversion is difficult to achieve.
In contrast, in other procedures, such as alternation, subversion is more
easily achievable. Unfortunately few trials outside health care research give
detailed and adequate descriptions of how participants were randomised.
There are notable exceptions. For example, Hirschel and colleagues (1992)
described in detail how participants were randomised. It is worth repro-
ducing their description here in full as an example of good practice:

The procedures for the random assignment used the police depart-
ment’s Computer Assisted Dispatch system. When any call for the
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services was received at the police department the complaint-taker
brought up a format on the computer that is stamped with the time
when the person makes the initial contact. The time field is a five-
digit number representing the cumulative seconds at that time for
the day and was used to generate the random treatment assignments.
Dividing the time field by 3 and adding 1 to the remainder produced
a digit of 1, 2, or 3, which represented the code for the assigned treat-
ment response. This is based on the time a call is received and was not
subject to manipulation because the time stamp occurred automat-
ically before the telecommunication operator was informed of the
reason for the call. There were no problems encountered in imple-
menting the randomization process. By removing the process from
human decision-making, this aspect of the experiment was carried out
exactly as designed. (Hirschel et al., 1992)

Note how the procedure prevents any manipulation or potential subver-
sion of the random allocation.

5.3 Technical bias

Technical bias is when there is an error in the allocation schedule that
leads to bias. This can occur when complex allocation methods are used.
For instance, a large trial in health care (the COMET study) used an RCT
to evaluate a new epidural anaesthetic for women in labour. This trial
used a complex computer randomisation schedule which contained a
software error (COMET Study Group, 2001) which led to most partici-
pants in the study over the age of 25 years being allocated to one arm of
the trial. The fault was only discovered towards the completion of the trial
after 1000 women had been ‘randomised’, and it had to be re-started at
great expense. Indeed, potential computer problems with allocation
schedules have been reported as far back as the 1970s when Cook and
Campbell described an RCT evaluating children being allocated to ‘mag-
net’ schools (Cook and Campbell 1979). In the first year of the experi-
ment the randomisation was effective; however, in subsequent years a
faulty computer program produced biased groups of children. Cook and
Campbell (1979) have also described other forms of randomisation
errors. For example, in an urn-based allocation system where all the names
of potential participants were placed in a bowl, names towards the end
of the alphabet had been placed in last and were more likely to be
drawn, because the pieces of paper in the urn had not been sufficiently
shuffled. The possibility of technical bias can be minimised by using
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simple methods of randomisation. The programming requirements for
simple randomisation, as opposed to block randomisation or minimisa-
tion, are less demanding and consequently less likely to go wrong. For any
form of randomisation it is best to run through a series of ‘dummy’ allo-
cations to check the system is working before using it on participants.

5.4 Attrition bias

Unfortunately, many trials lose participants, and, unless the attrition
rate in a trial is random, it can lead to the possibility of selection bias.
Participants that leave one arm of the trial may be systematically differ-
ent (e.g., younger or older) from those who remain. If the drop-outs are
different in a known covariate (such as age, as above) this is less worry-
ing than the possibility that the drop-outs may differ on unknown
covariates which cannot possibly be compensated for in the analysis
through statistical adjustment. Even if the rate of attrition is the same in
both trial arms bias can still result.

The possibility of bias, however, is minimised, but never eliminated, if
attrition rates are similar between the arms of the trial. Attrition bias is
minimised if assiduous follow-up methods are applied to all randomised
participants. It is also important to try and retain participants even
when they do not wish to have the intervention any longer. Often par-
ticipants are happy to continue to be part of the trial even if they do not
wish to continue with the intervention. It is important, therefore, that
when a participant wishes to leave the trial it is confirmed that they are
also refusing to allow outcomes to be measured. It may be that they will
continue to give consent to gather outcomes via a third party, for example,
their teacher, doctor or social worker. Whilst including ‘non-active’ par-
ticipants will appear to dilute the treatment effects, this is preferable to
other, more serious, forms of bias. Dilution bias tends to underestimate
the effectiveness of a treatment, giving a more conservative estimate of the
benefits or adverse effects of treatment: it cannot overturn the direction
of effect. In contrast, attrition bias, which is a form of selection bias, can
change the direction of effect, leading the analyst to conclude a treat-
ment was beneficial, when it was actually harmful, or vice versa.

Another approach to reducing attrition is to have a treatment run-in
period. In most trials the bulk of the attrition occurs in the early stages
as the participants change their minds or find the treatment or therapy
no longer suits them. In some studies it is possible to put everyone on
the placebo for a few months before randomisation. Or alternatively, in
non-placebo trials, there might be an observational run-in period.
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During this time, hopefully, the bulk of the attrition should occur.
Participants are then randomised after the run-in period. For example, in
a trial of vitamin treatments nearly a third of the participants dropped out
during the run-in period (MRC/BHF Study Group, 2002). Importantly,
this occurred before randomisation and, therefore, reduced attrition dur-
ing the trial. An added benefit of using a run-in period is that if the partici-
pants are being selected on the basis of initial pre-test results we might
then re-measure them at the end of the run-in period, before random-
isation; those who had an erroneous value due to chance will regress
back to their normal value and will not then be included in the study.

Having a run-in period may not always be helpful. When using a
placebo run-in the subsequent trial may give an over-optimistic estimate
of effectiveness as the intervention is applied to a non-trial population.
This is because, even with a placebo, a proportion of participants will
stop taking the treatment. Pragmatic estimates of effectiveness will include
the diluted effects of people who stop taking their treatment for what-
ever reason. Including a run-in period will exclude ‘poor compliers’ from
effectiveness estimates (Pablos-Mendez, 1998). For example, it has been
estimated that having a run-in period for an aspirin trial resulted in a 90
per cent compliance rate over five years, which gave a reduction in
myocardial infarction of 0.56; however, had a run-in not been used, then
the effectiveness of the intervention might have only been a 0.71 reduc-
tion (Pablos-Mendez, 1998). However, it is likely that this latter effect-
iveness is the ‘true’ effect of the intervention in an average clinical
setting. Including a run-in period also increases the cost and complexity
of the study.

Paired randomisation is a method sometimes proposed to deal with
attrition bias (see for example, Farrington and Walsh, 2005). If participants
are paired and one of the pair is lost to follow-up some may consider
dropping the remaining member of the pair to deal with any bias caused
by attrition. This, however, is a mistake. Removing the surviving mem-
ber of the pair will correct for differences in observed variables, but will
not deal with imbalances that occur for unmeasured confounders. As an
example, consider Tables 5.2, 5.3 and 5.4

This study is balanced (Table 5.2) on gender (an observable character-
istic) through matching, whilst an unknown confounder or covariate
has been balanced due to the randomisation process. Thus in each group
we have three girls and three highs. Let us suppose we lose one of the
participants, as shown in Table 5.3.

Table 5.3 shows that now the trial is not balanced on gender as the
intervention group now has more girls than the control group.
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Table 5.2: Paired randomisation of ten pupils paired on gender

Control (unknown covariate) Intervention (unknown covariate)
Boy (high) Boy (low)

Girl (high) Girl (high)

Girl (low) Girl (high)

Boy (high) Boy (low)

Girl (low) Girl (high)

3 Girls and 3 highs 3 Girls and 3 highs

Table 5.3: Imbalance caused by attrition

Control (unknown covariate) Intervention (unknown covariate)
Boy (high) Boy (low)
Girl (high) Girl (high)
Girl (low) Girl (high)
Boy (high) Boy (low)
Girl (high)
2 Girls and 3 highs 3 Girls and 3 highs

Table 5.4: Attempting to correct for drop-out

Control (unknown covariate) Intervention (unknown covariate)
Boy (high) Boy (low)

Girl (high) Girl (high)

Girl (low) Girl (high)

Boy (high) Boy (low)

2 Girls and 3 highs 2 Girls and 2 highs

However, if we attempt to remedy this problem by removing the surviv-
ing participant in the pair we can see that, whilst this corrects the prob-
lem of gender imbalance, it introduces another bias (Table 5.4).

By removing the surviving participant in the pair we have made the
situation worse, in that we have reduced our sample size but not cor-
rected for group imbalance in the unknown variable. It would have been
better to retain all the participants and correct for the gender imbalance
using some form of regression analysis.

Attrition can change the results of a trial. For example, consider a trial
of education vouchers for children of poor parents. The use of vouchers
to enable parents of poor children to access private education is contro-
versial. In the state of New York, USA, a certain amount of vouchers is
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provided to enable children from poor backgrounds to attend private
schools. The budget for these vouchers is constrained and applications
exceed availability. Consequently, vouchers are given to households
randomly, which forms the basis, therefore, of a randomised experi-
ment. To assess the effect of vouchers on educational outcomes
researchers measured students who received vouchers and those who
did not before they started private school and at a point some time later.
However, these tests had missing data: some children did not complete
the pre-test and some did not complete the post-test. Consequently, a
significant proportion (40 per cent) had missing data. A complete case
analysis including only children who had measurements at both time
points seemed to indicate that black children from poor backgrounds
benefited from the vouchers in terms of academic achievement (Krueger
and Zhu, 2002). However, when the data were re-analysed including stu-
dents who had state standardised tests, which substantially reduced the
number of children missing due to attrition, this apparent benefit was
no longer statistically significant. In this instance attrition may have
produced misleading results.

5.5 Recruitment or consent bias

Usually refusal of participant consent does not introduce bias, as this
occurs before randomisation and non-consenting people are not
included in the trial. In some trial designs, however, consent is obtained
after randomisation and this can introduce bias. In an individually ran-
domised trial using Zelen’s method (Zelen, 1979) randomisation occurs
before consent to participate is obtained. This is similar to cluster ran-
domised trials where, like Zelen’s method, consent can occur after ran-
domisation (Torgerson, 2001a). As an example of selection bias occurring
in the latter situation, consider a trial of hip protectors (padded under-
wear) for hip fracture prevention. In this cluster trial 9 per cent of the
control patients refused consent, whereas over 30 per cent of the interven-
tion participants refused to take part in the study (Kannus et al., 2000). This
led to a significant imbalance between important prognostic variables
(i.e., age and weight), which may have confounded the results. Indeed,
there was evidence of bias within the trial as the intervention of padded
pants apparently reduced wrist fractures by 30 per cent. In Figure 5.1 we
show the problem schematically. In the trial, 22 clusters of patients were
randomised to receive or not receive the offer of hip protectors. In the con-
trol group there were 15 clusters containing 10735 participants, whilst in the
intervention group there were 8 clusters containing 650 participants.
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1725 eligible participants

8 Clusters 15 Clusters
650 in hip protector group 1075 in control group
204 refused 94 refused
(31%) (9%)
446 981
At baseline At baseline
69% 91%

Figure 5.1: Example of consent bias (Kannus et al., 2000)

After randomisation the participants were approached in the inter-
vention group and were asked to wear the hip protectors and provide
outcome data. In this group 31 per cent of the participants refused. In
the control group, however, the participants were asked to provide out-
come data only: only 9 per cent refused. This differential refusal rate is
likely to have introduced bias into the study, making the results less reli-
able. In this instance the trialists should have asked those participants in
the hip protector group who refused to use hip protectors to provide the
researchers with data on their fracture rate. It is likely that, of the 31 per
cent who initially refused, 22 per cent would have agreed to do this and
the refusal bias would have been potentially reduced or eliminated.

Recruitment bias can occur quite often in cluster trials (Torgerson, 2001a;
Puffer et al., 2003). This occurs when clusters are randomised before par-
ticipants are identified. For example, one might undertake a cluster trial
of training GPs to identify and treat people with depression. If the par-
ticipants have not been identified in advance it is likely that the GPs
who have been trained will identify different sorts of participants com-
pared with untrained GPs. This form of bias was noted in a pilot trial of
the MRC’s UK BEAM study (Farrin et al., 2005). In this study some of the
GP practices were allocated to a training arm whereby the GPs and the
practice staff were taught techniques of active back pain management. It
was found, however, that the active management practices recruited more,
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Table 5.5: Characteristics of participants at recruitment by allocated group for
managing back pain in the UK BEAM pilot study

Patient characteristics ~ Active Traditional Difference in p value*
recruited in pilot for Management management mean practice
UK BEAM (N =165) (N =66) means
Mean (SE) (95% CI)*
Age 44.3 (0.82)  45.5(1.29) - 1.19 0.44
(—4.35,1.97)
Roland Disability 8.9 (0.31) 10.3 (0.54) - 1.37 0.06
Questionnaire (0-24, (= 2.80, 0.07)
0 = good)
Aberdeen Back 28.6 (0.79)  34.2(1.76) - 5.85 0.01
Pain Scale (0-100, (- 10.15,— 1.56)
0 = good)
Binary characteristics Difference in
mean practice
percentage
(95% CI)
Number (%)
Female 97 (59%) 46 (70%) - 10.9 0.09
(—23.9, 2.05)
Further education 81 (50%) 21 (32%) 18.3 (4.4, 32.1) 0.01
after school
Currently in full- 93 (57%) 20 (31%) 26.8 (8.3, 45.3) 0.007

time employment

2 p values adjusted for clustered data. (Source: Farrin et al., 2005).

less severe, back pain participants than the control practices. As this was
leading to bias, this aspect of the design was dropped and all practices
consequently received active management.

Table 5.5 shows how differential recruitment within cluster trials can
lead to bias. The main outcomes in this trial were measures of back pain.
The two measures that were being considered for use in the main trial
were the Roland Disability Questionnaire (RDQ) and the Aberdeen Back
Pain Scale. As Table 5.5 shows, both these measures of back pain favoured
the intervention group. Therefore, even before the patient could have
benefited from any intervention their scores in the intervention group
were greater. Notice also that the numbers in the intervention group are
more than double those in the control group. This means that in this
trial the GPs in the intervention group were tending to include patients
with milder back pain symptoms than those in the control group, thus
biasing the trial. This trial does show one important finding: if primary
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care staff have received training in a medical condition, they will recruit
more patients to a randomised trial. This finding is very useful to those
who have difficulty in recruiting trial participants.

‘Recruitment bias’ can lead to a form of selection bias, which means
the groups are not comparable in important prognostic factors. This
form of bias can be avoided if all members of the cluster are identified in
advance of randomisation. Even when non-consent is similar, bias can
still occur as different people from each arm might refuse consent. For
example, in a randomised trial of an intervention to reduce bullying in
schools, about 30 per cent of parents did not give consent for their chil-
dren to fill in the questionnaires, which formed the basis of the outcome
measurement (Grossman et al., 1997). It is possible that this high refusal
rate could have introduced bias. Consent bias can be eliminated, how-
ever, by acquiring consent before randomisation. For instance, in the UK
BEAM study, identifying all recent back pain patients from the GP regis-
ters could have avoided the problem. These patients could have been
invited to participate in repeated questionnaire surveys of their back
pain. Once consent to this had taken place then the practices could have
been randomised to receive the training or not receive it. The effect of
training then would have been evaluated on patients who had a history
of back pain. The question being addressed is slightly different from the
original one. We would not be evaluating the effect of training on
patients presenting to their GP with back pain, but rather evaluating the
effect on those with a previous history of back pain. Because back pain
recurs, many of these patients will be the same. If the training were
effective we would have to assume it was also effective on new incident
cases of back pain. Importantly, however, this approach would prevent
any possibility of recruitment bias.

If it is not possible, or practical, to identify participants before random-
isation, differential consent can be avoided by offering standard therapy
to non-consenting participants in the active arm and obtaining consent
for follow-up.

5.6 Ascertainment, reporting or detection bias

Ascertainment, reporting or detection bias occurs when investigators
consciously or unconsciously bias a trial by reporting events more con-
scientiously in one treatment arm compared with the other arm. For
example, teachers may be, understandably, more sensitive to any poten-
tial problems, or benefits, of a new teaching method. In this instance,
the new method could appear to carry an increased risk of problems
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merely due to increased surveillance of the intervention group.
Alternatively, the teacher may be convinced of the efficacy of the new
approach and be more assiduous in reporting problems in the control
arm than in the intervention group. Reporting of the trial blind to treat-
ment allocation can minimise detection bias.

For example, in a trial evaluating the effectiveness of volunteer tutor-
ing on reading among first grade children, Rimm-Kaufman et al. (1999)
used blinded assessment of outcome in both pre- and post-tests.

Examiners were blind as to whether or not the child was in the
tutored or control group. (Rimm-Kaufman et al., 1999)

Alternatively, event reporting can be ascertained from differential
sources (e.g., participant and participant’s teacher or doctor), which
should minimise the risk of detection bias. A good example of the bias
that can be introduced by unblinded assessors is in the area of multiple
sclerosis (Noseworthy et al., 1994). In this study physicians were asked
to ascertain whether or not a patient’s condition had improved. Two sets
of physicians were asked to make the judgement. Physicians in one
group were blinded to whether the patient was taking the placebo or the
active therapy, whilst the physicians in the other group were not
blinded. For the blinded physicians no apparent difference between the
groups of patients was observed. In contrast, the unblinded clinicians
rated patients taking the active treatment as having fewer symptoms,
and this difference was statistically significant. Consequently, failure to
blind assessment, as distinct from failure to blind participants, can
introduce significant bias.

5.7 Performance or dilution bias

Dilution bias occurs when participants in any of the alternative inter-
ventions after randomisation receive one of the comparator interven-
tions. For example, in a trial evaluating the effectiveness of social worker
visits on levels of domestic violence (Davis and Taylor, 1997) a proportion
of the control group participants received the visits, whilst a larger num-
ber of the intervention group participants failed to receive the treatment,
thus tending to ‘dilute’ any observable treatment effects. Alternatively, or
in addition, participants in the control group may seek out alternatives,
which can produce a biased underestimate of effect. For example, if in
an RCT evaluating early morning classes, parents of children allocated
to the control group differentially sought private evening tuition to
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make up for the perceived disadvantage of being allocated to the control
group, this would have the effect of producing a biased underestimate of
the effect of early morning classes and increase the possibility of a Type
I error (i.e., erroneously concluding there was no difference when, in fact,
there was). This problem can be reduced by, if possible, blinding the par-
ticipant to the nature of the experiment. Alternatively, one could use some
form of balanced or crossover design. In the example of early morning
classes, one could either inform the parents of the control children that
their children would receive the intervention the following term, which
should reduce the likelihood of parents seeking out extra tuition.
However, this approach would limit the length of follow-up and prevent
an assessment of any longer-term effects of booster classes. Alternatively,
or in addition, we could allocate half of the children to early morning
classes in maths whilst the other half could be allocated to additional lit-
eracy lessons, and each group could act as the control for the other in
the two different subjects. Another approach to dealing with dilution
problems is to address this statistically. If it is possible to measure which
participants did not get the intervention, then a latent or instrumental
variable analysis could be undertaken, which in principle would control
for the effect of non-compliance (Hewitt et al., 2006).

5.8 Delay bias

Often there is a delay between treatment allocation and intervention. In
between allocation and intervention, study events can and do occur.
This may lead to a dilution in the effect of the treatment due to the
delay. For example, the MRC’s GRIT trial may have been affected by
delay bias (GRIT Study Group, 2004). This trial was an evaluation of two
treatment policies for pregnant women whose babies were failing to
thrive. One policy for women who were more than 24 weeks pregnant
was to deliver the baby as soon as possible. This approach, however, had
risks for the baby, in that prematurity is an important risk factor for a
number of disabilities (e.g., blindness, learning disabilities). Therefore,
the alternative policy was to wait and see, which had the disadvantage
that it might endanger the babies’ lives. Because of the uncertainty
about which was the best approach, the GRIT study randomised preg-
nant women into two groups: immediate or delayed delivery. Clearly, to
observe an effect of the two policies there must have been as wide a gap as
possible in the average delivery times between the two groups. However,
‘immediate’ was supposed to be within 24 hours, but often tended to be
much longer due to various issues, such as scheduling women for theatre;
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more than 25 per cent of the women were delayed more than one day
before delivery. Therefore, the time gap between the treatment groups
was relatively small (four days), which may have biased the results away
from the beneficial or harmful effects of delayed delivery. In this
instance, however, the trial did show a benefit for delay among rela-
tively early pregnancies. Because of the dilution effects of delay ideally,
therefore, allocation must take place as close as possible to treatment.

5.9 Hawthorne effects

The ‘Hawthorne effect’ refers to a non-randomised experiment undertaken
in a factory. The researchers were looking at methods for increasing pro-
duction among workers and they measured changes in productivity
after manipulating certain variables, such as lighting and heating. They
found, to their surprise, that productivity increased even when working
conditions worsened. This effect was put down to workers responding to
being in an experiment rather than because of any of the changes to their
working conditions (Silverman, 1998). Extrapolating this effect to a trial,
it is possible that an intervention group may improve, not through any
intrinsic effect of the intervention but due to merely taking part in the
experiment. This will produce a Type I error: that is erroneously con-
cluding there is a difference when, in truth, there is not.

Hawthorne effects can be avoided or minimised if the control group is
either given an alternative or ‘sham’ intervention that would induce
similar Hawthorne effects as those affecting the intervention group,
thereby cancelling out its effects. Some form of balanced design would
address the Hawthorne problem.

5.10 Resentful demoralisation

Where participants have a strong preference for one of the interventions
and are allocated to the perceived ‘wrong’ treatment, this can lead to the
phenomenon of ‘resentful demoralisation’ (Brewin and Bradley, 1989),
which can in turn lead to performance or dilution bias. This might, for
instance, mean that the control participants seek out some form of alter-
native intervention, which, if effective, will dilute the effects of the
intervention. Alternatively, the controls may comply less well than
usual with their ‘standard’ intervention, and reduce the effectiveness of
the control intervention. This will tend to exaggerate any beneficial
effects. In theory it is possible for such an effect within a trial to lead to
an apparent overall benefit of the novel intervention when, in truth, no
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such treatment effect exists. Even if resentful demoralisation does not
lead to other forms of bias, it may create a bias in its own right by alter-
ing the psychological outcomes of participants in the control group to
such an extent that they will ‘under-perform’ on the various outcome
measures. Resentful demoralisation can be addressed in a number of ways.
First, the potential participants can be asked their preferences at base-
line. These preferences can then be used in an adjusted analysis. Second,
the standard intervention can be made to look more attractive in order
to reduce any disappointment effects.

5.11 Chance imbalances

Even when randomisation is properly undertaken there is always the
possibility that the groups will be different in an important covariate, by
chance: this is sometimes known as chance bias, although strictly speak-
ing it is not a bias (Altman and Doré, 1991). Randomisation will ensure
that, in the long run, the ‘average’ randomised trial will be completely
balanced in the important covariates. Nevertheless, some trials will be
unbalanced by chance, which will affect outcome. It is of little consola-
tion to the trialist to find that, despite using randomisation in the
design, the trial has had the misfortune to be the one in twenty that, by
chance, is unbalanced in an important covariate. This problem can
never completely be resolved; however, the possibility of it occurring
can be reduced. When planning a trial, trialists can identify one or two
important predictors of outcome, and then a stratified form of randomi-
sation can be undertaken which will ensure that these important covari-
ates will be balanced between the groups. Alternatively, as noted
previously, post-randomisation stratification may be best, by identifying
and measuring important covariates before the trial starts and ensuring
that these are included in the analysis at the end.

5.12 Intention to treat

If a rigorous trial has been undertaken which avoids all the design biases
that can affect the results of the study, using an inappropriate analytical
approach can introduce bias. The most robust analytical method that
should be used when analysing the results of randomised trials is
through the use of intention to treat analysis (ITT) (Hollis and
Campbell, 1999). Once a participant has been randomised they should
remain within their allocated group for analytical purposes even if they
‘cross over’ into the other intervention arm or stop their intervention.
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For example, consider a trial of extra classes for children. Some children
allocated to receive extra tuition will either not go to any classes or stop
going after one or two classes. In other words, they have crossed over to
the no-treatment group. If we exclude these children from the analysis
we will undermine the random allocation as such children will be very
different from the children who continue with the classes. Importantly,
the children with similar characteristics will remain in the no treatment
arm. Comparison with the exclusion of the drop-outs will seriously bias
the study. Therefore, if possible, all children should be analysed in the
groups to which they were originally assigned: that is, using intention to
teach (or treat) analysis (Torgerson and Torgerson, 2003). Exploratory
analyses of those who attended classes to generate more research
hypotheses are acceptable as long as the results are not used to inform
educational policy.

As an example of how ITT analysis should be used, consider two simi-
lar trials in the area of criminal justice. Both trials examined the effect-
iveness of interventions to reduce domestic violence. In the first trial by
Davis and Taylor (1997) seven participants allocated to the control con-
dition (1.6 per cent) received the intervention, whilst 65 allocated to the
intervention failed to receive treatment (15 per cent). It would have
been tempting, but incorrect, to analyse the seven participants in the
control group as being in the active group and vice versa for the 65 who
did not receive the intervention. Fortunately, the authors were aware of
the dangers of bias that this could have produced and the resulting
analysis included all participants in their originally assigned group.
Feder and Dugan (2002) were faced with a similar problem. Fourteen
participants who had been allocated to the control group received the
intervention because the judge over-rode the random assignment and
insisted that these individuals should receive the intervention. The
authors yielded to the temptation of putting these fourteen participants
into the intervention group for the analysis. The problem with includ-
ing them in the experimental group is that these fourteen men were
very likely to have been different from the ‘average’ offender; indeed, it
is likely that they were more violent than average. This could have sig-
nificantly weakened the effect of the intervention by allowing them to
cross over in the analysis. Including these men in the ‘wrong’ group
could have biased the trial in a number of ways. First, they could have
been more likely to ‘regress to the mean’ and increase the average effect
of the intervention, making it appear effective when it was not. Second,
these men may have been more resistant to the intervention and pulled
down the average treatment effect, resulting in a no-effect observation.
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In an educational example Carlton and colleagues, evaluating the role
of peer tutoring, failed to use intention to teach analysis (Carlton et al.,
1985). In an attempt to avoid any dilution bias the authors excluded
non-adherent participants:

While the experimental group consisted of 74 students, 14 were
excluded from statistical analysis because of absences in excess of five
(5) days during the experimental program. (Carlton et al., 1985)

Similarly Martinussen and Kirby (1998), evaluating the effect of instruc-
tion on phonological awareness for kindergarten children, removed two
participants:

Two children in the successive-phonological condition missed 25% of
the lessons due to school absences and therefore were removed from
the study, reducing the group size to 13. (Martinussen and Kirby, 1998)

For another example where intention to treat has not been used, con-
sider the report by Feldman and Fish (1991) on the use of computer
technology to support reading instruction. They stated the following:

It was found in each sample that approximately 86% of the students
with access to reading supports used them. Therefore, one-way
ANOVAs were computed for each school sample, comparing this sub-
sample with subjects who did not have access to reading supports.
(Feldman and Fish, 1991)

In this example the authors violated the randomisation procedure by
comparing only those who actually used the intervention after random-
isation. Therefore, they excluded the 14 per cent of students who, for
whatever reason, chose not to use the computer technology. However,
by doing this they were not comparing like with like, as the 14 per cent
of students who would have not used the technology had they been
offered it, remained in the control group. These students were likely to
have had different learning characteristics from those who used the
technology. Consequently it is likely that their presence in the control
group and absence in the intervention group biased the trial’s results.
Let us consider a hypothetical example of how this might work. In
Table 5.6 we show the composition of a trial after random allocation. We
can see that the average score for each group is 18. Because of random-
isation, we assume that the average score for each group is the same.
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Table 5.6: Baseline characteristics of a trial with two distinct subgroups

Subgroups Intervention (N = 100) Control (N = 100)
Group low 10 (n = 20) 10 (n = 20)
Group high 20 (n = 80) 20 (n = 80)
Total average score 18 18

Table 5.7:  Follow-up scores after excluding those who did not get the

intervention

Subgroups Intervention (N = 80) Control (N = 100)
Group low 0O =0) 10 (n = 20)
Group high 20 (n = 80) 20 (n = 80)
Total average score 20 18

Note, however, that within both the intervention and the control groups
we have two distinct subgroups. One group, which is the smaller group,
has a very low mean score of 10, whilst the higher scoring subgroup, the
larger group, has a mean score of 20. This composition would be typical
within most randomised trials. In a trial of blood pressure, for example,
we could easily form subgroups of older and younger participants and the
older participants would have a higher blood pressure compared with
the younger patients. In an educational trial the older children may have
higher pre-test scores than the younger children. But because this is a
trial we are not worried about these subgroup differences within each of
the randomised groups as random allocation ensures that they exist in
equal proportions. Consequently the group means are the same: 18 points
each. However, this benefit of randomisation only exists if we can keep
all the randomised participants within the study analysis. In Table 5.7
we show what could happen if we do not use ITT analysis.

In this example participants within the low subgroup were not
included in the analysis. This might be because they did not receive the
intervention and the analysts mistakenly thought they should not include
them in the analysis or it might be because they had dropped out.
Whatever the reason, the consequences are the same: bias has been
introduced. Consequently we can see that in the follow-up data analysis
the intervention group appears to be better than the control group with
an average score of 20. However, in this example, the intervention was
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Table 5.8: Follow-up scores after using ‘on-treatment’ analysis

Subgroups Intervention (N = 80)  Control (N = 120)
Group low 0On=0) 10 (n = 40)
Group high 20 (n = 80) 20 (n = 80)
Total average score 20 16.7

ineffective and the difference in scores was purely a result of not using
ITT analysis because we differentially excluded the low-scoring group.

If we decide to use on-treatment analysis this makes the bias worse. In
on-treatment analysis we put those who received the intervention into
a treatment-received group even if they had not been randomised to that
group. In Table 5.8 we show those in the intervention group who did
not receive the intervention placed in the control group.

As we can see, using this strategy increases the bias even more than
using a strategy of not including them. We cannot deal with the above
problem by excluding similar participants from the control group
because we do not know who they are. One of the main reasons we ran-
domise is to control for the unknown variables. In this example the char-
acteristic of participants who are ‘low’ may be unmeasurable. Therefore
we cannot identify the participants with the same characteristic from
the control group. We cannot attempt to do this by removing partici-
pants who have similar baseline scores. Whilst this might seem to be a
solution, it is not. This is because, even if they were matched on pre-test
scores, the ones who refused the intervention may have some other
characteristic that means that they are better or worse at improving on
their baseline score. As we do not know what this characteristic is, we
cannot adjust for it by either removing similar people from the control
group or by using statistical approaches such as regression analysis.
Because of the potential problem of selection bias, on-treatment analy-
sis should always be treated very cautiously, as it has the potential to
produce misleading results.

Let us examine another example of failure to use ITT. In a trial of an
intervention to improve attainment, a number of students did not use
the intervention (Tucker et al., 1998). The response by the trialists was as
follows:

The Default Control Group consisted of students initially assigned to
the Experimental Group, but who did not follow through in partici-
pating as they had agreed. (Tucker et al., 1998)
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From reading the paper it would appear that most of the ‘default control
group’ were actually from the experimental group as there were 17 par-
ticipants in this group, 42 in the control group and 24 in the experimen-
tal group: thus assuming an equal allocation ratio we would expect
about 42 in each group as 17 + 24 is 41 then it seems likely that virtu-
ally all were from the experimental arm.

In Table 5.9 we show how failure to use intention to treat can exagger-
ate treatment effects. In the table we have taken data from Tucker et al.
(1998). If we examine the baseline maths score we can see that the
experimental group has the highest score, the control group has a lower
score and the default control has the lowest score. Given that this is a
randomised trial then we would expect the baseline values to be fairly
similar. However, the control group’s mean score is 10 per cent lower.
On the other hand if we calculate what the score of all the controls is
likely to have been we can see the baseline difference is halved (i.e.,
5 per cent).

At follow-up we can see that the difference between the experimental
group and the control group is about half a standard deviation (i.e., half
an effect size). If we then put all the default control participants in with
the experimental group we can see that the difference is only 0.19 of a
standard deviation: a much smaller effect. The failure of the authors in
this case to analyse by randomisation status is likely to have exaggerated
any effect of their intervention.

Intention to treat analysis can actually be quite difficult to achieve. In
theory ITT analysis only occurs when 100 per cent of participants are
included in the analysis. This is rarely achieved. There will nearly always
be some form of attrition. Participants who are completely lost to follow-
up after randomisation and do not provide any data for the analysis will
have to be excluded from the analysis. Such an analysis is unlikely to be
biased if the attrition rate is low and is equally distributed between the
study arms. If some data are provided then these can be used in the

Table 5.9: Comparison of on-treatment versus intention to treat analysis

Group Baseline maths ~ Year 1 maths
Experimental group 2.20 (0.84) 2.51 (0.94)
Control 1.98 (1.08) 2.05 (1.18)
Default control 1.91 (1.11) 1.86 (1.24)
2Experimental group + Default control ~ 2.08 (0.96) 2.24 (1.07)

4 Estimated values.
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analysis. Although ‘pure’ intention to treat analysis will be impossible
to achieve in many trials, the analytical philosophy for every trial
should be ITT.

5.13 Application of inclusion/exclusion criteria

Exclusion bias occurs after randomisation when participants are excluded
from the study. Sometimes it is legitimate to exclude participants after they
have been randomised as some will have been randomised in error.
Quite often those recruiting a participant may misinterpret the inclu-
sion criteria and recruit a participant that should not be included in a
trial. As an extreme example, in a study of hip protectors for the preven-
tion of hip fractures among women, a man was accidentally recruited
(Birks et al., 2004). This is because the woman to whom the invitation
was extended to take part was uninterested in the trial; however, her
husband was interested in the trial. Consequently he completed the
consent and eligibility forms and posted them back to the trial centre
and received padded underwear suitable for women! Because this was all
done by post the researchers did not realise until some time after the
randomisation that he breached one of the eligibility criteria, namely
being a woman. Consequently he was excluded from the study. In this
instance, the exclusion criterion was obvious and this exclusion would
not have led to bias. However, there may be grey areas with respect to
applying the inclusion/exclusion criteria. If the person who is reviewing
these criteria post-randomisation is not masked to the group allocation
then they may consciously or unconsciously exclude participants selec-
tively and bias the trial. If it is suspected that there are people in the trial
who violate the inclusion/exclusion criteria the question is what should
be done with these participants within the analysis? If knowledge of
their group allocation is known when the decision is being made as to
whether they should be included or excluded, this can lead to bias.
Similarly, some of the reported outcomes may or may not be the a priori
study outcomes. Again the decision whether to classify such outcomes
may be biased if the allocation schedule is known. This form of bias can
be avoided if all the crucial analytical decisions are made with the ana-
lyst ‘blind’ to treatment allocation, or if, alternatively, once randomised
the participant remains within the analysis even if they do not strictly
fulfil the relevant criteria. An example of potentially biased exclusion
occurred in a large randomised controlled trial of breast cancer screen-
ing in the USA (Ggtzsche and Olsen, 2000). In this study the women
were randomised using a matched pairs design, which appears not to
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have been done properly as there were unequal numbers in the groups.
After randomisation women who had had a diagnosis of breast cancer in
the past were excluded. However, because the women were randomised
the numbers of exclusions should have been the same: this was not the
case. In the group that received screening there were 30131 women,
whilst for the control group there were 30565 (Getzsche and Olsen,
2000). Note, the exclusions were higher for the intervention group than
for the control group. In a methodological critique of the trial Gotzsche
and Olsen calculated that there were significant imbalances in age of
menopause and previous history of a lump in the breast (both
p < 0.0001), both of which are significantly associated with future
development of breast cancer. Consequently the results of this trial
should be treated with caution.

Sometimes participants are dropped from an analysis for reasons that
are not quite clear. For example, Castle and colleagues (1994) evaluated
a phonemic awareness programme and dropped a pair of participants
because one of the control students had personal difficulties:

However, we dropped one pair of data from the study after posttest-
ing was completed because of personal problems, outside the control
of the school, experienced by one child in the control group. (Castle
et al., 1994)

Note that in this instance all of the data had been collected on the con-
trol child. It is not good practice to drop data on this basis as the results
may be known and this could have driven the decision to remove the
participants and introduced bias. As a minimum the authors should
report an analysis with all of the participants as well as the one without.

Another relatively common mistake is to exclude ‘outliers’ from the
analysis. Some participants have a huge change in test scores and many
analysts remove these values to ensure a better statistical distribution of
the data. Such an approach may introduce bias, as this violates inten-
tion to treat analysis.

5.14 Subgroup analysis

Another form of analytical bias is that of unplanned subgroup analysis.
Often there is a temptation to see whether the intervention has worked
more effectively among some types of participants than others. This is
especially true if the overall effect observed in a trial is of ‘no difference’
between the groups. If sufficient subgroup analyses are undertaken then a
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statistically significant difference will be found. Thus, in twenty subgroup
analyses there is a high chance of one being statistically significant
when, in truth, there is no difference. Indeed, far fewer subgroup analy-
ses are required to substantially increase the risk of a chance finding. As a
demonstration of the problem of subgroup analyses in a health care trial,
statisticians analysing a large trial of the effects of aspirin noted that for
people who had the star signs Gemini and Libra aspirin was ineffective,
but very effective for people born under other star signs (ISIS-2, 1988). This
analysis was done as an entertaining protest as the Lancet referees had
required a large number of subgroup analyses, which were done, but a non-
sensical subgroup analysis was also included to make the point that this
was an unscientific practice. An example of how subgroup analyses can
mislead is with respect to the use of antimicrobial agents for the preven-
tion of pre-term birth. On the basis of a subgroup analysis, which appeared
to show a benefit of antimicrobial agents for pregnant women at high risk
of preterm delivery, a trial to test this was undertaken (Shennan et al.,
2006). This trial was stopped early because the use of such agents increased
the risk of preterm birth rather than prevented it (Shennan et al., 2006).

For another example of how subgroup analyses can be misleading let
us consider a large RCT of raloxifene. This trial was designed to assess
the effects of raloxifene on osteoporotic fractures (Barrett-Connor et al.,
2002). The authors also looked at the effect of this treatment on cardio-
vascular events. They found that overall there was no difference between
women taking placebo or those taking raloxifene in terms of cardiovas-
cular outcomes. However, they then looked at a subgroup of women
who were at high risk of sustaining a cardiovascular event. Among this
subgroup they found a statistically significant reduction in cardiovascu-
lar events among the women taking raloxifene. Note, however, if this
effect is real it also must mean that raloxifene increases cardiovascular
events among lower risk women. The authors did counsel caution about
accepting these results at face value and recommended a second trial to
confirm their findings. A follow-up trial would be required by the regu-
latory bodies before the manufacturers could make claims about their
product’s effectiveness with respect to cardiovascular disease. Such a fol-
low-up trial was undertaken and this study recruited women at higher
risk of cardiovascular disease (i.e., similar characteristics to the subgroup
in the earlier trial). No effect of raloxifene was found on cardiovascular
outcomes (Barrett-Connor et al., 2006). This example illustrates the pos-
sible dangers of accepting the findings of subgroup analyses.

To avoid this problem subgroup analyses must be pre-specified
before data are analysed. In addition, there needs to be a good scientific
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justification for each subgroup analysis. Finally, any subgroup analysis
undertaken after the results of the main trial comparison are known
should be described as a post hoc analysis, and the results should be treated
with caution. Indeed, the results should be interpreted as an indication
for further research rather than evidence to drive policy or practice.

5.15 Conclusions

This chapter has described a number of potential biases that can affect a
randomised controlled trial. Unfortunately many RCTs are susceptible to
the biases described previously because the researchers have not planned
or executed the study with sufficient care to avoid them. It must be empha-
sised, however, that these biases can equally affect non-randomised
designs. Consequently the potential of them occurring must not be used as
an excuse to adopt a less rigorous approach to evaluation. As Berk (2005)
argued in the context of criminal justice trials: ‘If the alternative to a ran-
domized experiment is an observational study, the difficulties are likely
to be even worse.’

What is required is careful thought and planning to ensure that such
biases are prevented from occurring.

5.16 Key points

e Trial allocation can be subverted unless undertaken independently
and concealed.

e Careful attention needs to be paid to computer software when using
computer randomisation to avoid technical errors.

e Recruitment bias can occur if randomisation precedes consent.

e Exclusion bias can occur if an unblinded researcher excludes partici-
pants after allocation.

e Attrition bias can occur if drop-out is substantial and/or different
between groups.

e Resentful demoralisation can occur if participants are not allocated to
their desired treatment.

e Performance bias can occur if participants access a trial intervention
or similar treatment during the study.

e Ascertainment bias can occur if the researcher is not blinded to group
allocations when assessing outcomes.

e Multiple subgroup analyses can mislead.
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Placebo and Sham Trials

6.1 Background

The traditional view of a randomised trial is the double- or triple-blind
placebo drug trial in health care research. The basic outline of this study
design is as follows. Participants are randomly allocated to receive an
active or placebo drug. A placebo looks and tastes the same as an active
drug. The use of placebo achieves several important theoretical goals.
First, it ‘blinds’ or masks the participant, researchers and the clinicians
to the group allocation. This reduces the chance of a Hawthorne effect
differentially affecting one of the trial arms, which would bias the
results. It avoids the resentful demoralisation of the control group, as
they will not be aware they are taking an inactive treatment. Differential
attrition bias may be less likely, as any attrition will be evenly spread
across both groups (unless one treatment has side-effects). It also addresses
performance bias, as participants are less likely to differentially seek
alternative treatments to compensate for their allocation to the control
arm. Finally, subversion bias is less likely, as concealment of allocation is
more easily attainable than in a non-placebo trial.

In surgical trials placebo controlled trials are possible, although rare,
for obvious ethical reasons. Control participants can be given a ‘sham’
operation, which usually consists of making a minimal incision in the skin.
This sham operation ‘blinds’ the patient, but does not, however, blind the
surgeon or the surgical team. Doctors and other health care professionals
who are not part of the direct surgical team can be ‘blinded’. Indeed, in one
surgical trial, blood-colour liquid was used to stain the dressings used with
the control group participants to mask the patient and the nursing staff to
the patient’s relatively minimal surgery (Majeed et al., 1996). By blinding
in this fashion this trial demonstrated that minimally invasive surgery
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did not lead to a shorter length of hospital stay for laparoscopic surgery
compared with open surgery (contrary to previous unblinded trials).

Whilst the placebo trial has many undoubted scientific advantages, it
is not without its critics. One major criticism is that the use of placebos
abolishes the placebo effect, which may be an important component of
the overall treatment (if it exists). When a doctor prescribes a medicine
to a patient in ‘real life’, then both the doctor and the patient know that
the patient is receiving an active treatment. The expectations of receiv-
ing an active treatment may enhance its effect, which should be counted
as part of the overall benefit of treatment. The use of placebos eliminates
this effect and thereby may reduce the estimate of the overall benefit of
the drug when used outside the context of a clinical trial. A similar crit-
icism of the placebo trial is that the novel treatment is not evaluated
against routine clinical practice, because this does not involve the use of
placebos. It is possible that the response profile of patients may be entirely
different if they know they are receiving an active treatment.

It is sometimes assumed that patients and their physicians need to
remain blind to the treatment allocation for a placebo controlled trial to be
effective (Fergusson et al., 2004). However, this is only true if the treatment
is ineffective (Senn, 2004). If the treatment is effective then patients in the
intervention group are more likely to guess their treatment allocation,
compared with patients in the control group. Patients receiving effective
treatments who feel better are more likely to guess they are on the active
rather than the placebo therapy, and therefore patient blinding appears
to fail in this instance. If the quality of a trial is judged on the success or
not of blinding then we might rapidly conclude, incorrectly, that the only
good placebo trials are those of ineffective therapies! The main purpose of
the placebo, from the perspective of the trialists, is to blind the patient,
the treatment assessors and the patient’s physicians to the treatment
groups at the start of the trial. Maintaining patient blinding is most
important when there is no treatment effect; if the treatment has no
benefit or harm and no side-effects patients should remain blind at the
end of the intervention. Thus the placebo guards against a Type I error: that
is, erroneously concluding an intervention is effective when it is not.

With an ineffective therapy blinding prevents bias occurring because
participants believe that they feel better merely because they think they
are taking an active or novel treatment. With an effective or harmful
treatment the blinding is less important as the effects of the treatment
will tend to break the blinding differentially between groups.

The placebo control design is perceived as a rigorous method of eval-
uating the efficacy of a treatment, but it may not be the best design
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when estimating the effectiveness of treatments in routine clinical prac-
tice. Placebo control is ideal for estimating any intrinsic biological effect
of a therapy but is less helpful when we want to decide how routine
practice should be changed.

6.2 Evidence for placebo trials

As far as we are aware there are two randomised studies comparing the
use of a placebo with an ‘open’ trial design. Avenell and colleagues ran-
domised patients participating in a calcium and vitamin D trial to be
informed about either a placebo trial or an open trial. The aim of the
study was to examine recruitment rates between the two arms (Avenell
et al., 2004). The results showed a statistically significant increase of about
10 per cent in recruitment into the open study compared with the placebo
trial. The authors also found a lower drop-out rate among participants in
the open study; however, this lower drop-out was mainly confined to
patients in the open control group — there was a significant drop-out
among patients taking the calcium treatment compared with patients in
the no treatment group. Therefore, in this instance the use of placebo
prevented differential drop-out but did not reduce drop-out overall. It
appears that patients were confused between taking the intervention
and staying in the trial. Trial participants assumed that if they no longer
wanted to take the tablets they were no longer needed for the trial and
therefore they withdrew. This trial reinforces the importance of empha-
sising to participants that treatment withdrawal and trial withdrawal are
two distinct issues. Treatment withdrawal does not automatically mean
trial withdrawal and participants should be encouraged to remain in the
study to provide follow-up data to allow an intention to treat analysis.

Hemminki et al. (2004) conducted another RCT of the placebo design
among women being recruited to a study of hormone replacement ther-
apy. Women were randomised to be asked to take part in an open design
or a placebo control design. Recruitment was significantly enhanced in
the open arm: there was a similar 10 per cent absolute increase in recruit-
ment rates. Therefore, not using a placebo appears to lead to recruitment
of a more representative sample of the population into a trial, which
increases its external validity.

6.3 The placebo effect

It is important to know whether the placebo effect is due simply to a
combination of regression to the mean effects and temporal change or
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to a ‘true’ placebo effect, as it is an intrinsic component of therapies that
include this phenomenon. In a randomised controlled trial of different
types of placebo treatment (sham acupuncture versus oral placebo for
persistent arm pain) Kaptchuk et al. (2006) attempted to shed light on
this question. Their trial demonstrated that placebo acupuncture pro-
duced statistically significantly greater effects on self-reported arm pain
compared with the placebo pill. This suggests, therefore, that the ‘placebo
effect’ is enhanced by a more credible placebo treatment.

6.4 Is it a placebo?

It is not unknown for mistakes to occur during placebo manufacture
resulting in identical placebo and active treatment. For example, in a
randomised controlled trial of magnetic bracelets for arthritis of the knee,
three groups were formed: true magnets group, placebo magnets group
and dummy magnets group (Harlow et al., 2004). The placebo magnets
were intended to contain a weak, non-therapeutic, magnetic field to
blind the patient. The dummy magnet was ordinary steel, which could
easily be unblinded. At the trial’s conclusion, however, it was discovered
that, due to a manufacturing error, some of the placebo magnets con-
tained a full strength magnetic field.

Another problem with placebo control is that sometimes this may
contain an active treatment in its own right. For instance, a placebo
cream for wound dressings could potentially irritate the wound and
retard healing and in this instance we could then observe an effect of
the active cream.

6.5 Conclusions

Placebo controlled trials are the main work horses of trials in clinical
medicine. Their use has been invaluable in the search for effective and
safe pharmacological therapies. They are a valuable means of imple-
menting blinding, which helps avoid associated biases. Their use will
often enhance the validity of a trial design. Placebos reduce the risk of
an ineffective therapy appearing to be effective due to post-randomisa-
tion biases, such as the Hawthorne effect or patient preference. For
many proponents of evidence-based medicine they represent the gold-
standard in terms of trial based research and some will assign less credi-
bility to ‘open’, that is non-placebo, trials. This is a pity because whilst
placebo trials do have a place in the pantheon of trial research they are
only one of a number of different trial designs and may not be appropriate
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to address some questions. They can be used for some therapies; how-
ever, for the broadest range of potential interventions across the social
sciences their potential is rather more limited. Indeed, for some types of
trial their use, even if possible, may not be appropriate. In particular, in
a pragmatic randomised controlled trial, placebos may not be necessary.
The use of placebos may also hinder recruitment and make the trial less
generalisable. In the next chapter we examine the use of pragmatic trials.

6.6 Key points

e Placebo trials are often considered the ‘gold-standard’ in RCT design
in health care research.

e Placebo control facilitates blinding and can prevent some post-
randomisation biases.

e Placebo trials may not be appropriate or possible in many instances.

e The evidence base for placebo trials is in the form of two RCTs of
placebos which suggest that they have a lower recruitment and higher
drop-out rate than ‘open’ trials.
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Pragmatic and Explanatory Trials

7.1 Background

It cannot be overemphasized that unless an experiment can be gen-
eralized at least a bit, time and resources have been wasted. One does
not really care about the results of a study unless its conclusions can be
used to guide future decisions. (Berk, 2005)

The randomised controlled trial is the ‘gold-standard’ method for esti-
mating effectiveness because it eliminates selection bias. Random allo-
cation provides a powerful means of establishing causation (Torgerson
and Torgerson, 2001) and ensures that any differences in post-test
results are causally related to the intervention. However, the results of
the trial may not be generalisable to a wider population beyond the par-
ticipants in the trial, unless those participants were randomly sampled
from an underlying population. A trial may not have a wider application
if the intervention, context and sample are unusual. For example, an
educational intervention might have been undertaken in ‘laboratory’
conditions unrelated to the real-life context of a school. Even if the sam-
ple of students participating in such a trial represents the wider popula-
tion of students, the lack of a pragmatic setting would limit its wider
application. Similarly, a health care trial that used placebo or sham treat-
ments and was delivered by specialist physicians may not be applicable
to patients seen in routine care.

The randomised controlled trial has excellent internal validity as it
controls for both the known and unknown confounders. Many critics of
the RCT method have criticised the design, arguing that the issue of gen-
eralising from an RCT to the whole population that may benefit from
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the intervention is problematic. There are several reasons why many, if
not most, trials have some problems with external validity.

7.2 Consent issues

In many trials potential participants who could be included in a study
sometimes refuse consent. Ethically there is nothing that can be done
about this issue. Some researchers are harsh in their condemnation of
‘trial dodgers’ especially if they demand the untested treatment outside
of the trial (Silverman, 1997). In this latter case an untested treatment
should always be refused outside of a trial; this is ethical as, if we do not
know that a treatment is effective, we could be exposing someone to
unknown risks. Whilst a proportion of participants will be exposed to
the more hazardous treatment within a trial setting they will also have the
chance of being given the safety of the superior treatment, which may
mean no intervention at all. If they are given an unproven active treat-
ment then there is no chance that they would get the safest treatment, in
the event that the active therapy is hazardous.

People who volunteer to take part in trials are different from those
who do not (Silverman, 1997). This does threaten the external validity
of a study as, once the trial is finished, one has to assume that the results
will apply to all potential patients who fit the biomedical inclusion criteria
even if they belong to a group that refuses to participate in a trial.

Many trials exclude those who cannot give informed consent (e.g.,
patients suffering from some form of dementia) or will not take part. Often
such people are at very high risk of a given illness and would benefit
from an effective treatment. Excluding such participants will mean that
we can never be completely sure that the treatment is effective in that
group. Some groups are deliberately excluded from trials because of
medico-legal problems. For example, children are often excluded from
clinical trials because they require ‘proxy’ consent from a parent or
guardian. Whether proxy consent is legally valid is unclear and could
potentially leave the sponsors of the trial open to future legal action from
children who may have been damaged as a consequence of taking part
in the trial. This issue is particularly disturbing as, for example, drugs often
have differential effects among children compared with adults, not least
in terms of dosage. Therefore, many doctors are compelled to use treat-
ments for children out of the strict terms of the drug’s licence because
they have not properly been evaluated in children. More children end
up being exposed to unproven doses than would have been the case if a
trial had included them, because of this potential legal problem.
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7.3 Statistical issues

As well as consent barriers to participation, there are often statistical rea-
sons for excluding certain groups. For instance, many of the trials eval-
uating cardiac drugs only include male participants, whilst many trials
evaluating anti-fracture treatments only include female participants.
This is because for some diseases the incidence is so much greater
for one gender than the other. Therefore, whilst osteoporosis is a prob-
lem for men the fracture rate is much greater among women. If a
trial included men it would need to be larger and longer to observe a sta-
tistically significant benefit compared with a study with female partici-
pants only. This, unfortunately, leads to the problem that the results
of an effectiveness trial for a therapy that has mainly been evaluated
in one gender cannot be directly extrapolated to the other gender.
Clearly, the solution to this problem is to undertake trials in both gen-
ders. However, to do this of course requires more funds to support such
studies.

7.4 Inclusion/exclusion criteria

Another barrier to external generalisability is the use of strict inclu-
sion/exclusion criteria. To avoid this problem such criteria must be kept
as loose as possible and also closely reflect the ‘real world’ patient. In
practice this means making the trial as pragmatic as possible. On the other
hand, some criteria have been chosen to minimise loss to follow-up. For
instance, excluding the very old is sometimes done on the basis that the
mortality rate is high and many participants may not live to reach the
end of the trial. Further, some participants are excluded in that they
have an ‘unorthodox’ lifestyle which means they are at high risk of loss
to follow-up. In terms of loss due to mortality, this should not be an
issue as it will be recorded and should not be a source of bias, although
losing participants through mortality will reduce the power of the trial
as the effective sample size decreases.

Loss to follow-up can result in bias if the participant is completely unac-
counted for. There is a trade-off between trying to recruit as many par-
ticipants from as wide a sample as possible and attempting to include
only participants who will follow the trial protocol and not drop out,
thereby maximising the internal validity of the trial. Loss to follow-up
can be an important source of bias. Consequently many researchers will
tend not to recruit participants who are deemed to be at high risk of
dropping out of the trial completely.
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7.5 Internal versus external validity

The critics of the generalisability of RCT methods need to ask themselves:
is it better to have the ‘right’ answer among a relatively narrow group of
participants or the ‘wrong’ answer amongst everyone? For a study to have
external validity it must, first, have internal validity. Hormone replace-
ment therapy observational studies have high external validity, in the
sense that the women are more representative of the likely users of HRT
than those participating in trials, but they give completely the wrong
result. Because of biased observational studies it was believed for many
years that HRT prevented cardiovascular outcomes. These large non-
randomised studies had ‘good’ external validity in that they observed
the effects of HRT as it was being used by clinicians (Grady et al., 1992).
Nevertheless, because of uncontrolled biases the very precise answers these
studies gave were wrong. In contrast, the Women'’s Health Initiative (WHI)
trial, whilst placebo controlled and possessing a wide range of exclusion
criteria (such as excluding women who had menopausal symptoms),
showed that the actual effect of HRT was to significantly increase stokes
and cardiac events (Writing Group, 2002).

7.6 Explanatory trials

Many, if not most, health care trials are explanatory or mechanistic
studies. These are characterised by having tightly defined entry criteria,
the use of placebos, and the intervention delivered in a specialist centre.
These studies tend to be tightly controlled in order to reduce the statis-
tical variation within the sample and to make sure that if there is an
effect within a given sample size the researcher is best placed to observe
the effect. Such studies are useful in the early stages of developing an
intervention, where they may be dubbed ‘phase II' trials, in the sense
that they help researchers to witness the effectiveness of an intervention
under ideal circumstances. They are of less help, however, when inform-
ing routine policy and practice where trials are needed that have been
designed with this in mind. We need to design trials that maximise
external validity whilst retaining the high internal validity that ran-
domisation affords. It is not the act of randomisation that gives a trial
poor external validity; other design aspects cause this.

7.7 Pragmatic trials

A trial needs to be generalisable. A trial that cannot be extrapolated to
other populations is not worth doing (Berk, 2005) because the purpose
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of the trial is to help the wider population improve their health, educa-
tion or offending status.

Poor ecological validity or generalisability has been long debated in
health care trials. In the 1960s Schwartz and Lellouch (1967) argued
strongly that randomised controlled trials should be ‘pragmatic’ when
undertaken in health care to improve generalisability of the health care
treatments. Researchers in other fields, such as educational research, were
using pragmatic trial designs at around the same time:

The ‘Field Experiment’ approach which has been followed in our first
main experiment requires the maintenance of everyday-life conditions
as far as is possible within limits imposed by the need for control of
variables. (Downing and Jones, 1966)

To make policy and practice more effective requires evidence from large,
rigorous, pragmatic experiments, not mechanistic or explanatory trials
with selected populations within unusual settings, which are difficult to
generalise to the usual population. Tunis and colleagues (2003), writing in
the context of health care trials, argued that the lack of pragmatic trials is
an important problem for clinicians and other health care decision-makers.

We can design trials that maximise external or ecological validity.
Indeed, we need to consider this issue for all trials we design unless we
do not expect or want the results to be applied widely.

7.8 Participant selection

One of the first design issues we need to consider when designing a prag-
matic trial is what kind of participants we will include. We want to avoid
the situation, as far as possible, of excluding any participant who has the
potential to benefit from the intervention. For example, recruiting
patients and delivering an experimental treatment within primary care
will make the trial results far more generalisable to the bulk of patients
with a given condition, compared with a trial based in secondary care
and delivered by specialist physicians. In many situations, particularly
in health care, we will never be able to recruit a random sample of people
into the trial. This is because of a mixture of ethical and practical rea-
sons. If we wanted to undertake a trial among patients with heart failure,
ideally we would identify all such patients and take a random sample.
However, this is simply not possible as patients have to give informed
consent and since some refuse this will result in a selected sample. Further,
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even if we were to ignore the issue of consent then simply identifying
the relevant population may not be possible.

It has been suggested that patients should not be allowed to refuse con-
sent to take part in a trial (Evans, 2004). The argument falls along the lines
of social responsibility: we should contribute to the fight against disease
by taking part in clinical trials because we all benefit from treatments
that some participants have made possible by taking part in such trials.
Just as people are not allowed to ‘free ride’ on tax funded services, people
should not be allowed to have medical treatments that others have vol-
unteered to evaluate (Evans, 2004). Even if one agrees with this point of
view and considers it appropriate to force people to participate in trials,
scientifically it may produce other problems. It is likely that those being
made to take part would comply badly with treatment, fill in outcome
measures badly, and in short behave in such a manner as to bias the trial.

Within the context of other areas, such as education, the same phi-
losophy applies. If we have developed a novel literacy intervention then
we need to test it among a sample of children that represents as closely
as possible the population of children to which the intervention will be
applied if found to be effective.

7.9 Outcomes in pragmatic trials

A key aspect of generalisability is the type of outcome assessed. Many
health care trials assess surrogate outcomes such as blood pressure, cho-
lesterol levels or bone density. Whilst these outcomes are of biological
interest to the physicians, they are of less importance to the patient and
the policy-maker. Most people with high blood pressure will not go on
to have a stroke. An estimate of treatment effectiveness in terms of
strokes prevented is more important to the patient and the doctor than
the measured reduction in blood pressure. Similarly, increases in bone
density do not directly benefit or disadvantage a patient — the impact of
treatment on fracture occurrence is the important outcome. In other set-
tings, such as education and crime and justice, the same principle
applies. For example, for those managing offenders, the important out-
come is reduction in reoffending rate, rather than changes in perceived
potential to offend.

Pragmatic trials should measure the true or final outcome of interest,
whereas explanatory trials are often not large enough to do this.
Consequently a defining feature of a pragmatic trial is that its main out-
come is as close as possible to the outcome that is most important to the
participant, practitioner and policy-maker.
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7.10 Explanatory or pragmatic interventions

One issue with respect to designing more pragmatic trials is the type of
intervention we wish to evaluate. A pragmatic approach to the definition
of an intervention might differ considerably from that of an ‘explana-
tory’ approach. For example, in a trial by Little and colleagues, patients
with a sore throat were randomised to receive antibiotics or no antibi-
otics (Little et al., 1997). In this instance placebos were not used, although
they could have been. This trial was pragmatic in that it was designed to
be as close as possible to routine care. In routine care of patients with a
sore throat GPs generally do not use placebos. They generally explain to
the patient that they either would be getting an antibiotic or they would
not. In this instance the only difference was that the GP randomised
patients to receive an antibiotic or no antibiotic. The patient and the GP
were aware of their treatment allocation, just as they would be in nor-
mal practice. In this instance, the trial failed to show any benefit of
antibiotics on the resolution of the sore throat. Importantly, however, in
further follow-ups the trialists noted the patients allocated to receive
antibiotics were more likely to visit their doctor with another sore throat
than patients who were allocated to the control group. This is because
all patients with sore throats eventually improved anyway. The patients
who received the antibiotics mistakenly ascribed their recovery to the
drug. However, if placebos had been used then patients in both trial
arms would have ascribed their recovery to the antibiotic. The results of
the trial were actually more policy relevant because it was not placebo
controlled and was of a pragmatic design. GPs now know that if they
give patients antibiotics for sore throats not only will this have no effect,
but the patient will be more likely to return in subsequent months for
further prescriptions when they next contract a sore throat.

7.11 Dealing with post-randomisation bias in
pragmatic trials

Because pragmatic trials in general should not use placebos or sham con-
trols, this makes them more susceptible to post-randomisation biases.
Potential biases might be the Hawthorne effect or resentful demoralisa-
tion. For example, participants might be interested in taking part in a
trial of counselling or physiotherapy and will feel demoralised if they are
allocated to ‘usual’ care. As noted in Chapter 5, this demoralisation
process could introduce bias and we need to avoid this if possible. There
are several design solutions we might consider to reduce this possibility.
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We discuss in future chapters the role that patient preference or cluster
designs might play in ameliorating such problems. One relatively straight-
forward approach might be to use a balanced incomplete block design.
In this design two, mutually exclusive, interventions are evaluated. Instead
of the control group being offered an unattractive intervention, such as
usual care, we might test two attractive interventions and these are used
to control for problems such as the Hawthorne effect. We might evalu-
ate two different curricula, such as geography and maths. One group is
given a new geography curriculum whilst the other a new maths cur-
riculum. This is attractive to schools and students as both groups are in
receipt of a new intervention. This not only controls for the Hawthorne
effect and resentful demoralisation but might also make the trial more
attractive in terms of recruitment to teachers and children.

A health care example might include the evaluation of clinical guide-
lines. If we wanted to assess whether guidelines for angina were effective
we might balance this by giving the control group guidelines for dia-
betes treatments.

Alternatively we might allocate participants to a waiting list control,
which may avoid any bias through demoralisation, although this may
not avoid Hawthorne effects.

The suggestions made above control for biases arising from the partici-
pant. We need also to be careful about controlling for ascertainment bias.
However, this is probably easier to deal with than participant biases by
masking the assessors to group allocation when they perform the post-tests.

Box 7.1: Evidence for the use of a balanced design

Verstappen and colleagues (2003, 2004) used a balanced design in the
evaluation of guidelines for ordering tests. Twenty-six physicians
were allocated to an intervention providing feedback on their
requests for diagnostic tests. Half were allocated to receive feedback
on the clinical problems of cardiovascular complaints, upper and
lower abdominal problems, whilst the other half got feedback on
asthma and degenerative joint complaints. The trial showed a reduc-
tion in the designated clinical conditions. Interestingly the same
group included a third arm that did not have any control conditions.
When an intervention group was compared with the ‘untreated’ con-
trol group it was found the difference was much greater compared
with the control group that had had an intervention, which suggests
that the Hawthorne effect in this instance could exaggerate the treat-
ment effects (Verstappen et al., 2003, 2004).
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Table 7.1: Summary of different trial characteristics of pragmatic versus
explanatory trials

Trial characteristic Explanatory Pragmatic

Primary aim Inform understanding  Inform policy and practice
of interventions effects
and mechanisms.

Sample size Small Large to cope with
heterogeneous population

Outcome measures Surrogates (e.g., blood Participant relevant outcomes

pressure) (e.g., stroke, literacy,

offending)

Use of placebos/sham  Yes No

Setting Specialist centres Usual practice

Entry criteria Restricted Broad

In Table 7.1 we summarise the general differential characteristics of
pragmatic and explanatory trial design.

7.12 Discussion

The pragmatic randomised controlled trial is a powerful tool for inform-
ing practice and policy. The pragmatic design might be actually more
cost effective than the explanatory approach and given that the control
condition is usual practice we should not need much in the way of extra
resources for half the study population. We may also use standard assess-
ments and tests and therefore may not require too much extra work for
the practitioners we expect to deliver the experimental interventions. As
we are less interested in the mechanisms of how an intervention works
rather than in whether it works or not, costs can often be saved by not
requiring intensive investigations of patients (e.g., blood tests).

Some referees and funding bodies are not amenable to the concept of a
pragmatic trial. In a recent randomised trial of computer software to aid the
teaching of spelling the trial results were rejected by a number of journals
(Brooks et al., 2006), partly because of the pragmatic nature of the study:

It purports to be a randomized controlled trial, but it demonstrates
none of the attributes of one. Educational research should begin with a
theory, a causal argument, based on a careful examination of the liter-
ature. We need to understand in an experiment why such an approach
would be examined, the historical linkages of past research to present
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investigations. What conditions would lead one to believe that this
technology could make a difference in spelling? Is it something in the
software, on the computer screen, on children’s interaction with the
particular curriculum. This is often the most important part of a study,
the question, and the rationale for why the investigation is critically
important. (anonymous referee)

This trial was an evaluation of the use of computer technology to improve
the literacy abilities of children aged 11-12 years. Children were ran-
domly allocated to receive the intervention via a laptop computer in
addition to their normal literacy classes at the beginning of the autumn
term. The control children received the intervention at the end of the
term. Both groups were followed up just before the control group received
the intervention. The trial was pragmatic in design as it was based in a
usual school setting. The only difference in implementation was that
arbitrary assignment to the intervention was replaced by random allo-
cation. The intervention is widely used in schools on the basis of little or
no randomised evidence. For the trialists evaluating the program, the
educational, psychological theory behind the program was of relatively
little importance as the software program was already being implemented.
The key question to the trialists was whether, when the implementation
was evaluated using the RCT, it worked. Interestingly the trial produced
no evidence to show that it was effective (Brooks et al., 2006). Similarly,
for many medical treatments, the theory underpinning their mode of
action is either not yet understood, is misunderstood or is plain wrong,
yet this is not important if a treatment is effective or ineffective.
However, because explanatory trials have traditionally fitted into the basic
science research paradigm this may have resulted in funding problems
for pragmatic trials (Tunis et al., 2003).

In conclusion, pragmatic trials are more likely to be policy and practi-
tioner relevant than explanatory or mechanistic studies. The latter are
important to inform the development of effective interventions; how-
ever, the pragmatic study is crucial to evaluate an intervention in a ‘real
world’ setting. Clearly some pragmatic trials share attributes of explana-
tory trials. If we were evaluating a new treatment in a pragmatic setting
then taking blood samples or other biological measurements would use-
fully add value to the study by enabling us to understand better some of
the mechanisms underpinning the intervention. By doing this we may
be able to inform future research on how to improve an intervention so
that it works even better or, conversely, we may be able to explain why
an intervention has failed to work.
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Trials can have poor external validity. The challenge for trialists is to
minimise this whilst retaining the scientific rigour of their study design.
Alternatives to trials, whilst purporting to have addressed the problem
of poor external validity, run the risk of obtaining the wrong answer. It
is better to be right about some people than wrong about everyone.

7.13 Key points

e Pragmatic trials are essential for addressing practice and policy ques-
tions.

e They can address some of the external validity problems of mecha-
nistic trials.

e They need some careful design to avoid post-randomisation bias.
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Designs to Deal with Participant
Preference

8.1 Background

Randomisation equalises characteristics of participants between the two
or more randomised groups, but it does not deal with people’s hopes
and treatment expectations. In open trials the participant is informed of
treatment assignment, which can lead to psychological expectations
and introduce bias. A key source of this potential bias within a trial is the
role of participants’ preferences. When presented with different inter-
ventions many participants will ‘prefer’ one of the alternatives. These
preferences can introduce bias if one of the treatment options is only
available within the context of randomised trial. If, for example, 50 per
cent of those being recruited to a trial of A versus B prefer intervention
A, and this is only available within the trial, then they are likely to con-
sent to participate. However, half of those 50 per cent of participants
preferring A will be disappointed as they will be allocated to treatment B.
If participants are randomised to an intervention that they do not want
they may consciously or unconsciously perform less well in the outcome
measures, in the knowledge that there was a preferable alternative.

8.2 Theoretical effect of preferences

In theory, preferences can affect outcome. In Table 8.1 we show how this
may occur. Let us assume 200 participants are randomised in a trial: 100
participants prefer treatment A and the remainder have no preference.
Let us also assume that the intervention has no intrinsic effect and that
both groups should score 10 on their pre-test scores, but their preferences
affect their post-test scores. Those who prefer and receive intervention A
score 20 per cent greater at post-test than those who are ‘indifferent’ and
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Table 8.1: Theoretical impact of preferences

Intervention A Intervention B
N =100 N =100
Number with preference for A (mean score) 50 (12) 50 (8)
Indifferent 50 (10) 50 (10)
Average score 11 9

receive treatment A. In contrast, those who prefer intervention A but are
allocated to intervention B feel demoralised and do not perform as well
on their post-test, and only score 8 points. The table illustrates this pos-
sibility. Despite the intervention having no intrinsic effects, in this the-
oretical example we could conclude that intervention A is more effective
than intervention B.

8.3 Accounting for preferences

One approach to dealing with preferences is to ask for the participants’
preferences. We can randomise the ‘indifferent’ participants and exclude
from the randomisation participants with strong preferences who could
bias the trial (Brewin and Bradley, 1989). This method, called the ‘patient
preference design’, comprehensive cohort or Brewin-Bradley approach,
requires that the non-randomised groups are also followed up to inform
policy and practice with respect to what happens to people who receive
the intervention that they desire.

One problem with this approach is that it may reduce the external valid-
ity of the study. Another problem with the approach concerns the statisti-
cal analysis of the ‘preference’ arms. These groups have been selected by
the patients themselves and bias can result. For example, an RCT of an RCT
by Luellen and colleagues showed that there were biases between the
non-randomised and the randomised groups (Luellen et al., 2005).

Advocates of preference designs argue that, by following up the choices
of preference participants, we can gain valuable information about the
effects of the intervention on those who exercise their preference, albeit
in an observational or non-randomised fashion. For example, a prefer-
ence design used by Henshaw and colleagues compared the effectiveness
of surgical versus medical termination of unwanted pregnancies
(Henshaw et al., 1993). In the randomised arms of the study no differ-
ence in effectiveness between the two approaches was observed; how-
ever, in the preference arms it was noted that women who preferred the
surgical approach lived much greater distances from the hospital than
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Box 8.1: Evidence for preference effects in education

In an RCT of 454 undergraduate psychology students Luellen et al.
(2005) tested the notion that participants choosing their interven-
tion would have different effect size scores from those randomised to
their intervention. The design was as follows: students were ran-
domised into two groups. In one group they were then re-randomised
to either maths training or vocabulary training. In the other group
they chose maths or vocabulary training. In the randomised compar-
ison those getting maths training scored 3.92 points better than those
receiving vocabulary training, but in the choice group the students
scored 4.65 points greater. The exercise of choice biased the effective-
ness of training upwards.

women who opted for the medical termination. In health policy terms
the results indicated that both treatments should be made available to
women, but in a rural community there should be greater provision of
surgical facilities as this was the preferred option for women having to
travel distances because it involved fewer visits to the hospital than
medical termination.

Another variation of the preference design is to use the preferences of
the practitioner (for example, doctor or teacher). In a trial evaluating the
effects of an orthopaedic physician, where a patient’s referring GP had
no preference regarding whether the patient was seen by an orthopaedic
surgeon or physician the patient was allocated by alternation (Leigh-
Brown et al., 2001); where a patient’s GP had a preference the patient
was seen by the preferred clinician.

Whilst accepting that only randomising indifferent participants will
eliminate preference biases, critics of the preference approach doubt
that the effort of following up people who exercise a preference is worth-
while (Cooper et al., 1997). This is because observed treatment effects in
the non-randomised groups will be confounded due to selection bias,
which will render the results uninterpretable.

A randomised trial of a preference design tested the effects on partici-
pant recruitment to a trial (Cooper et al., 1997). In this trial of treat-
ments for menorrhagia, women were randomised to take part in either a
preference trial or in an ordinary trial. The results of this study showed
that the preference trial had more participants due to the inclusion of
women in the preference arms but, importantly, recruitment to the ran-
domised arms was neither enhanced nor reduced. The authors concluded
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Treatment A Treatment B
Prefer A Prefer B
No preference No preference
Sum of effects Sum of effects

Figure 8.1: Composition of participants for two alternative interventions

that, in this instance, an ordinary non-preference design might have
been better, with the extra resources devoted to following up the prefer-
ence participants used to recruit more to the randomised arms.

In Figure 8.1 we illustrate the composition of patients who in real life are
offered two alternatives: intervention A or intervention B. Those that do
not have a treatment preference are the indifferent participants and are
arbitrarily assigned to one treatment or the other, whilst those with a pref-
erence are allocated to the treatment they prefer. In a pragmatic trial we
would like to know the sum of the effectiveness of treatment of those who
do not have a treatment allocation preference and those that would prefer
a given treatment. The Brewin-Bradley design attempts to provide some of
this information. However, it fails to do this in an unbiased manner due to
the selection effects of the participants who choose their treatment.

8.4 Fully randomised preference design

An alternative to the preference approach is to adopt a fully randomised
preference design (Torgerson et al., 1996). Usually some participants have
a preference but because they cannot have the new treatment without
taking part in the trial they are willing to consent to randomisation. If
these preferences are recorded before randomisation, then one can esti-
mate the effect of the intervention among participants without a prefer-
ence but also among those with a preference.

Figure 8.2 shows the composition of the randomised population in a
normal randomised trial. We can potentially have six subgroups in a
two-armed trial. Normally the largest preference group contains those
who prefer the novel intervention as those who prefer the usual inter-
vention do not usually consent to go into the trial; they can get what
they prefer by not going into the trial. However, some people, despite
having a preference for the usual intervention, will still allow them-
selves to be randomised.
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Treatment A Treatment B
Prefer A Prefer B
Prefer B Prefer A

No preference No preference

Sum of effects Sum of effects

Figure 8.2: Composition of participants in a fully randomised preference design

For example, in a randomised trial of a physiotherapy intervention
the following groups of participants were produced:

(a) indifferent participants allocated to physiotherapy;

(b) indifferent participants allocated to standard care;

(c) participants preferring physiotherapy who were allocated to receive it;

(d) participants preferring physiotherapy who were allocated to stan-
dard care (Klaber-Moffett et al., 1999).

Note, in this instance there were no patients who preferred standard
care who consented to randomisation. Using this fully randomised prefer-
ence design the trialists demonstrated that the treatment was effective
across the different preference groups and appeared to have been unaf-
fected by patient preference. Indeed, the study showed the treatment
was equally effective among those who preferred the treatment and were
allocated to receive it as it was among the indifferent participants. In
contrast, a similar approach was used in a trial of health visitors and this
trial showed a marked effect on treatment satisfaction by initial treatment
preference (Clement et al., 1998), although in this study preference was
asked after randomisation (Clement, personal communication).

In contrast to the back pain study, where there appeared to be no
interaction between preference and outcome, let us consider another mus-
culoskeletal trial, this time looking at the effects of preference within an
intervention aimed at alleviating neck pain (Klaber-Moffett et al., 2005).
In this study participants were presented with two treatment options:
usual care consisting of between five and ten physiotherapy treatments
or brief intervention which was conducted as a one-off treatment ses-
sion to teach the patient to ‘self-treat’ using principles of cognitive
behavioural therapy. In contrast with the back pain study participants
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exhibited preferences for both treatment groups. Consequently there
were six treatment groups:

(a) indifferent randomised to standard care;

(b) indifferent randomised to brief intervention;

(c) preferred standard care and randomised to standard care;

(d) preferred standard care and randomised to brief intervention;

(e) preferred brief intervention and randomised to brief intervention;
(f) preferred brief intervention and randomised to standard care.

Figure 8.3 shows the main results: among the indifferent participants
standard care resulted in better outcomes relative to the brief interven-
tion. Remember in the indifferent group, patient preferences are elimi-
nated so any difference between the groups should be the ‘true’ treatment
effect unaffected by preference. The results among the subgroup of
patients who had a preference for standard care were similar, but note that
those who were randomised to brief intervention actually got slightly
worse. The final group, those who preferred brief intervention, produced
the most interesting result. In this group we can see the direction of effect
was reversed. Patients who preferred brief intervention but were allocated
to standard care actually did worse than those who received brief inter-
vention. This was despite us knowing that, in the absence of preferences,
standard care was the superior treatment. This trial, therefore, shows that
preferences can reverse treatment effects. If participants’ preferences had
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Figure 8.3:  Preference results of neck pain trial
Source: Klaber-Moffet et al.
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not been ascertained then we would have concluded that standard care
was most effective and all patients should be offered it. However, we now
can advise clinicians that patients who have no preference or who want
standard care should be offered this treatment; however, those who
express a desire for the brief intervention should get this.

The fully randomised preference approach has not been widely used.
However, a number of trials have started to use this approach and Table 8.2
describes some of the studies that have elicited preference from partici-
pants before they are randomised.

The table shows eliciting patients’ preferences before randomisation
has been used in a number of studies, primarily musculoskeletal inter-
ventions. Asking preferences prior to randomisation is probably the
most robust solution to controlling for the impact of patient prefer-
ences; however, it is not the complete answer. Participants who have a
very strong preference for standard or usual care will probably still refuse
randomisation. It is likely, therefore, that those who have a preference
for the intervention they would receive outside the trial represent a sub-
set of that preference group and will tend to represent the milder end of
the preference spectrum. Consequently if the novel intervention is found
to be effective and is adopted, thereby completely displacing the older
treatment, we will never be completely confident that the intervention
will be effective among those who preferred the former usual care.

8.5 Pre-randomised consent or Zelen’s method
Another approach to dealing with the potential biases due to patient

preference is to use the randomised consent or Zelen’s design (Zelen, 1979).

Table 8.2: Published examples of trials using the fully randomised preference
design

Reference Trial description Effect of
preference
Adamson et al., 2005 Treatment for alcohol dependence No
Carr et al., 2006 Exercise for low back pain No
Johnson et al., 2007 Exercise for low back pain Yes
Kitchener et al., 2006 Surgery for urinary incontinence Not stated
Klaber-Moffett et al., 1999 Exercise for low back pain No
Klaber-Moffett et al., 2005 Treatments for neck pain Yes
Salter et al., 2006 Acupuncture for neck pain No
Sherman et al., 2005 Yoga for low back pain Not stated

Thomas et al., 2004 Treatment for shoulder pain No
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Figure 8.4: Zelen’s single consent method

Zelen’s method often provokes strong reactions among researchers because
participants are not asked their consent to be randomised. Potential partic-
ipants for a trial are identified and then randomised without their knowl-
edge. Participants are only asked for their consent to treatment after
randomisation (Torgerson and Roland, 1998). There are two versions of
Zelen’s method: the single consent design and the double consent method.

In the single consent method (Figure 8.4) participants are randomised
and consent sought from those allocated to the novel treatment. Those
refusing consent are then given the standard treatment. This is consid-
ered ethical because access to the new treatment is only allowed through
participation in the trial. Importantly, however, in this trial design ITT
analysis is used: thus, participants are included for analytical purposes in
their originally assigned groups.

It is important, however, that intention to treat (ITT) analysis should
be used in Zelen’s method. All people who refuse treatment should be
retained in their original group for analytical purposes. Failure to do so
will result in selection bias. In a review of Zelen’s method as used in
health care, out of 51 trials included in the review, fifteen (29 per cent)
trials failed to use ITT analysis (Adamson et al., 2006).

In the double consent method participants allocated to either treat-
ment can refuse the allocated treatment and obtain unhindered access
to the other intervention. An example of this is a study by Sinclair and
colleagues (2005). In this education trial, students were

randomly assigned to the treatment or control group prior to the
process of obtaining permission using a stratified sampling procedure.
(Sinclair et al., 2005)

Zelen first proposed the single consent method for ethical reasons in
that it avoids the disappointment of patients who are allocated to the
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control treatment and makes the process of obtaining consent for the
novel treatment easier. For example, one trial that attempted to use
Zelen'’s method for ethical reasons was an evaluation of Extracoporeal
Membrane Oxygenation (ECMO) for premature infants or babies with
pulmonary hypertension (O’Rourke et al., 1989). The reason the trial-
ists, in this instance, felt Zelen’s method was appropriate was because in
such circumstances those consenting, the parents, would be suffering
acute anxiety because of their child’s condition. Clearly, because of ran-
domisation, half of all parents would be disappointed as their child
would receive standard care, which was known to have very high mor-
tality and morbidity rates. The trialists, therefore, felt that it was more
ethical not to ask for consent to randomise and only seek consent from
those randomised to the ECMO group. This trial of ECMO did not actu-
ally recruit sufficient participants to test the hypothesis that it would
improve survival. Interestingly, the trial that eventually did prove the
benefit of ECMO used conventional randomisation (i.e., asking parents
before randomisation for their consent) (Field et al., 1996). Indeed, a
qualitative study of ECMO parents of the possibility of using Zelen'’s
method for ethical reasons found that most parents would have pre-
ferred to have been told and given their consent although many in the
intervention group did not realise that they could have been allocated
to the control treatment (Snowden et al., 1997).

Because participants in the control group do not know about the trial
(for the single consent version) this allows Zelen’s method to form an
alternative to the patient preference design. Some screening trials use
Zelen's method as this produces a pragmatic estimate of the effective-
ness of a screening programme. For example, in a randomised controlled
trial of bone density screening, women were randomised to be invited to
attend screening or to act as controls. One year later both groups were
followed up to ascertain whether screening had had an adverse effect on
quality of life and whether those in the screened group were more likely
to be using HRT (Torgerson et al., 1997). Similarly, several trials of col-
orectal cancer screening have used Zelen’s method. Hardcastle and col-
leagues, for example, identified a section of the male population within
a UK city and randomised them into two groups (Hardcastle et al.,
1996). One group was screened for colorectal cancer whilst the other was
not. Both groups were then followed up via cancer registries to assess
whether screening reduced the incidence of colorectal cancer. The trial
showed that screening reduced bowel cancer by 30 per cent. In screen-
ing evaluations participants who are allocated to screening can, and do,
refuse consent to being screened (typically between 30-40 per cent of
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participants). This might be seen as a disadvantage of the design as it
introduces dilution bias. As approximately a third of the population do
not receive the intervention this will weaken or dilute any apparent
benefit of screening. However, the estimate of effect will be pragmatic
and more useful to policy-makers than if we had designed a trial whereby
100 per cent of the participants in the intervention group were screened.
Such a trial, with a 100 per cent uptake, will not reflect the costs and
benefits of introducing screening to the general population, as no rou-
tine screening programme (e.g., breast screening) obtains a screening
uptake exceeding 80 per cent.

Zelen’s method can be controversial, ethically, when it is associated
with individually randomised trials. In group, cluster or class randomised
trials Zelen’s method is routinely used with little controversy, despite
members of the group not giving individual consent to be randomised.

Zelen’s method is not without its scientific drawbacks (Torgerson,
2001b). If sufficient numbers of participants refuse their treatment allo-
cation then unacceptable treatment dilution can occur. This is made
worse if participants swap treatment arms (i.e., in the double consent
design). If they refuse the novel treatment and receive the standard
treatment then the dilution is greater. In a review of cancer trials that
used Zelen’s method, Altman and colleagues found the refusal rate among
patients randomised to the novel treatment ranged between 10-36 per
cent with an average of 18 per cent (Altman et al., 1995). Therefore, not
asking consent can introduce substantial dilution bias, which can under-
mine any treatment effect and increase the probability of a Type II error.
On the other hand, a more recent review of Zelen’s method, mainly in
non-cancer trials, found that cross-over rates were not too onerous, with
a median of about 9 per cent (Adamson et al., 2006). In the only example
we are aware of in a non-health care setting (education) non-acceptance
after randomisation was 15 per cent (Sinclair et al., 2005). This weakens
the power of the study. Also with Zelen’s method differential attrition is
more likely, which can introduce bias.

8.6 Regression discontinuity and randomisation

Sometimes it is not possible to randomise individuals that have some
measurable characteristic. It might be considered unethical, for
instance, to randomise patients with hypertension to a placebo. Or we
might be unable to randomise children who have achieved a test score
below a certain threshold not to attend a summer school (Jacob and
Lefgren, 2004). As noted previously, we could evaluate these interventions
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Box 8.2: Evidence for Zelen’s method

Adamson and colleagues (2006) undertook a methodological review
and searched for all health care trials that had used Zelen’s method
between 1990 and April 2005. They found only 58 trials that had
used the method. The majority (45) used the single consent design.
Most used the method to avoid biases associated with patients knowing
about the alternative treatment (e.g., Hawthorne effects, resentful
demoralisation, avoidance of contamination), rather than as an aid
to participant recruitment. Cross-over rates were modest (9 per cent).
The areas where they were used included: screening; surgery; drugs;
service configuration; and education (in a health context). Few trials
(4) explicitly included a cross-over factor in their sample size calcula-
tion. Intention to treat, as recommended by Zelen, was used in the
majority of trials although in a significant minority (26 per cent) it
was not.

using a regression discontinuity design, whereby we follow up a cohort
of participants including those who are ineligible for the intervention
and then look to see if there is a break in the slope of the regression line
of pre-treatment scores against post-treatment scores. We could strengthen
this design, however, by including a randomised trial for those for whom
it is still possible to randomise. Such an approach could be done as fol-
lows. Those participants that are above (or below) a threshold in an
identified cohort of participants receive the intervention. Those who fall
below (or above) the threshold are randomised into two groups — the
novel or usual intervention. This design has the advantage that we can
note whether or not the intervention is effective among a lower risk
population. We can also estimate the effectiveness of the intervention in
the high risk group, where we cannot randomise. Finally, it also controls
for the possible problem in the regression discontinuity design of a nat-
ural break or change coinciding with the choice of threshold.

8.7 Discussion

Participant preference can lead to bias in trials. Ignoring the role of pref-
erence on outcome can lead to concluding something is effective, when
it is not, or the reverse. The simplest and, in our view, most robust method
of dealing with this is to measure preference as a covariate at baseline:
that is, to ask the participants if they have a preference. By doing this
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the potential bias of the preference can be quantified and incorporated
into the analysis. Failure to ask about and measure preferences does not
mean that they will disappear — the result will be a potentially biased
analysis if preference does have an effect. This approach is a partial solu-
tion to the problem of preferences because, as noted previously, it will
not deal with strong preferences for usual care or cope with ethical bar-
riers to allocation. Consequently we do need to consider the use of other
designs.

There are alternative methods for dealing with preference effects. One
is to use Zelen's approach, another may be to use a trial design in com-
bination with the regression discontinuity method. The choice of the
different approaches will depend upon a combination of the research
question, outcomes and the practicalities or ethical impact of the choice
of design. An alternative to these approaches that may also deal with
participants’ preferences is the use of cluster or group randomisation. In
the next chapter we describe and discuss this type of trial design.

8.8 Key points

e Trials can produce biased results because of the operation of partici-
pants’ preferences through such effects as resentful demoralisation.

e One way to examine the impact of preferences is to ascertain pre-
treatment preferences and use these as a factor when interpreting or
analysing the results (fully randomised preference design).

e In some circumstances prior randomisation before consent is appro-
priate and this may eliminate the bias due to preference effects.
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Cluster Randomised
Controlled Trials

9.1 Background

The unit of random allocation usually takes one of two forms: individual
or cluster. In previous chapters we have considered randomised trials
where individuals are randomised to one of the comparator groups. A cluster
trial, sometimes known as a group or place randomised trial, randomises
groups of individuals to the relevant trial arms. Thus, for example,
classes or schools become the unit of allocation rather than individual
students, or hospital wards or GPs form the unit of allocation rather
than individual patients. Geographical areas might form a cluster: some
parts of a country, for example, might be allocated to a preventative
strategy for malaria or the implementation of a new teaching curricu-
lum. If, for practical reasons, we want to use an intervention at certain
times, then time can form the cluster unit of allocation. For instance, we
might want to evaluate a new piece of equipment or a new service, and
make this available during some time periods and remove it during oth-
ers. A study to look at the use of advocates to advise women at risk of
partner abuse could take the form of a cluster trial using week of antena-
tal appointment as the unit of allocation. The weeks in a year would be
randomised; the advocate would be present for half of the weeks and
not available for the other half. The use of cluster randomised trials to
evaluate non-drug treatments means that in health care research the use
of the method is increasing in popularity (Bland, 2004).

9.2 Advantages and disadvantages of cluster allocation

Cluster trials have a number of advantages over individually randomised
studies. Sometimes cluster randomisation is the only feasible method of
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doing a trial. For example, it may only be feasible to implement a new
curriculum at the school level. Therefore, a randomised trial evaluating
the curriculum would need to randomise some schools to adopt the new
curriculum while others would be allocated to continue with the exist-
ing curriculum. Cluster randomisation also avoids, or reduces, the risk of
‘contamination’ between the intervention group and the control group.
Contamination occurs when those who are exposed to the intervention
transfer some of the knowledge to the control group (Torgerson, 2001a).
This will ‘dilute’ any intervention effects and make it more difficult to
show a difference between the groups. For example, in order to evaluate a
‘problem solving’ method of learning, children could be individually
randomised to intervention or control group, but those allocated to the
control group could be ‘contaminated’ by their friends or peers in the
intervention group. If this is thought to be a genuine possibility chil-
dren could be randomised by school, which will greatly reduce the risk
of such contamination. Guideline evaluation or medical education trials
typically use cluster allocation. If we want to evaluate two methods of
educating doctors to manage patients with depression we would ran-
domise doctors and evaluate the impact of the education at the level of
the patient. It is inconceivable that we could evaluate a medical educa-
tion approach by asking the clinicians to apply their new knowledge to a
random half of their patients. On the other hand, patients can be indi-
vidually randomised to see a clinician, randomised to receive or not
receive additional training. That said, this approach is likely to be imprac-
tical for a number of reasons, not least in terms of patient consent.

Potential contamination of the control group is an important reason
for using cluster allocation. For instance a study by Steptoe and colleagues
(1999) used a cluster design to evaluate the effect of behavioural coun-
selling among adults with an increased risk of coronary heart disease.
Although not stated, they presumably used cluster allocation to prevent
contamination between the control and intervention groups. They may
also have used the design to avoid resentful demoralisation among
those participants allocated to the control group.

Cluster trials have a number of drawbacks. First, they require larger sam-
ple sizes of participants than individually randomised trials; typically,
between 50 per cent and 200 per cent more participants are required
because the standard statistical methods used for analysis and power cal-
culation assume that outcomes for individuals within a trial have no
relationship with the outcomes of others within the trial. In a cluster
trial this is usually not the case. If we randomise classes of children the
outcomes of children within any given class are going to be more similar
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to each other than to those of children in another class. This is because
children of similar characteristics are often selected into a class, and they
are all taught by the same teacher in the same environment. This cor-
relation between individuals within a cluster is known as the intracluster
correlation coefficient (ICC). When we undertake a power calculation to
determine how large our trial needs to be (see later) we take this ICC into
account in our calculation. When the ICC is O then the sample size is
equivalent to that of an individually randomised trial; however, the ICC
is typically larger than this, which will affect the sample size estimate.
The reasons for this are discussed later. Cluster trials also require more
sophisticated statistical techniques to deal with the multilevel character-
istics of the data. The analytical and sample size issues of cluster trials are
widely discussed elsewhere. Most methodological texts on cluster ran-
domisation discuss these issues at length (e.g., Donner and Klar, 2000;
Murray, 1998).

A more important issue, not covered at all in the main methodological
texts on cluster trials, concerns design biases which can introduce selec-
tion bias after randomisation. As noted earlier, sophisticated statistical
analyses cannot rescue a poorly designed and executed trial, and this
applies particularly to cluster randomised trials.

The first bias that cluster trials are prone to is biased recruitment
(Puffer et al., 2003; Farrin et al., 2005). Many cluster trials first recruit the
clusters, then randomise and finally recruit the participants: such an
approach invites bias. The allocation is usually known to those recruit-
ing the participants, so it can be selective, which introduces post-
randomisation selection bias. To avoid the possibility of recruitment
bias, potential participants within a cluster must ideally be identified in
advance of randomisation.

Another potential problem, not peculiar to cluster trials, is the practice
of post-randomisation exclusion. Like consent bias, this relates to lack of
blinding by the person applying the inclusion and exclusion criteria. For
example, Jellema and colleagues (2005) undertook a cluster randomised
trial of an intervention to train family doctors to treat back pain. The
intervention group recruited 17 per cent more patients than the control
group - suggesting recruitment bias — but they also excluded 14 per cent of
patients in the intervention group after allocation compared with only
3 per cent of the control group. This differential recruitment and exclusion
may not have introduced selection bias; however, we cannot be sure, and
this uncertainty undermines the credibility of the study.

The next problem with cluster trials relates to dilution bias. Because
participants are often allocated without their consent all the problems
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of Zelen’s method can be visited upon the cluster design. Dilution effects
can be likely, as some participants may refuse consent to the allocated
treatment. For example, in a trial testing the effectiveness of childhood
accident prevention through a process of education and offer of safety
measures such as stair gates, 25 per cent of the treatment group refused
the intervention (Kendrick et al., 1999). Consequently, in that trial any
intervention effects were diluted by 25 per cent.

In order to improve the quality of cluster trials participants should be
identified before the cluster randomisation which can avoid both recruit-
ment bias and dilution effects. If, in the study by Kendrick et al. (1999)
the families had been identified, and consent obtained before random-
isation, most of the 25 per cent of participants who would go on to refuse
the intervention would be identified at this stage and excluded, thereby
reducing dilution effects. Prior identification also avoids recruitment
bias and differential application of inclusion/exclusion criteria.

Cluster trials are more difficult to undertake rigorously than individually
randomised trials, although many of their problems can be avoided with
a little care. In a methodological review of cluster trials published in three
leading medical journals Puffer and colleagues found evidence for bias
in nearly 40 per cent of the studies identified (Puffer et al., 2003). Many
of these biases were due to unconcealed allocation, which caused differen-
tial recruitment to trial arms. Even among trials that recruited participants
before randomisation there was some evidence of differential exclusion.

Finally, a two-cluster trial is not a trial at all. Several clusters, at least,
per arm are needed to allow balance of cluster level covariates: the more
clusters the better. However, as a general rule there should be at least
four clusters per arm (i.e., eight for a two arm trial) to allow any chance
of cluster level covariation to be balanced out (Murray, 1998) and some
authors recommend at least seven per arm (Donner and Klar, 2000).

9.3 Assessment of outcomes

The methods for collecting outcomes can differ in a cluster randomised
controlled trial compared with an individually randomised trial.
Participants can be identified at pre-test, measured, and then re-tested at
some future date, as is the case for an individually randomised trial. A clus-
ter trial may pre- and post-test on different individuals. We might, for
example, measure outcomes on a random sample of cluster members
before we randomise clusters and then at a future date take another ran-
dom sample of cluster members on which to measure post-test outcomes.
It is quite possible that completely different participants are measured at
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pre- and post-test. In some cases it is not possible to follow up pre-test
participants; consequently, we can only measure the success of our pro-
gramme at post-test. For example, we might want to look at the impact
of an education programme for breast-feeding among women giving birth
in various labour wards. We might measure the breast-feeding prevalence
at baseline among women leaving the various hospitals to enable us to use
these data to either stratify the randomisation and/or to use the data as
a covariate in the statistical analysis (this would give us more power — see
later). A year later we would then measure the breast-feeding prevalence
among another group of women admitted to the labour wards and then
compare the twelve-month differences between the labour wards which
were allocated to the educational intervention and those which were
not, adjusting for baseline breast-feeding prevalence.

Another reason we might do this is if the pre-test has a potential train-
ing effect on the post-test, which might occur in an educational trial.
Although this would affect both groups equally as it is a randomised
trial, if we only have one validated form of the test this might increase
the chances of the test having a ceiling problem. Consequently we might
take a random sample of children and give them the baseline test and
use the other children to take the post-test. In some circumstances this
may also increase the statistical power.

If this approach is adopted it must be emphasised that one should
obtain a random sample of participants at both pre- and post-test — if
participants are chosen on some characteristic, such as ease of contact,
then this will introduce selection bias. Like randomisation, random
selection should be done by someone masked to the study hypothesis,
the participants’ characteristics and the initial group allocation.

9.4 Evidence for bias in cluster trials from a
systematic review

In certain substantive areas both cluster and individual randomisation
have been used. One area is in the use of hip protectors (Hahn et al.,
2005). Figure 9.1 shows a plot of effect sizes from a systematic review of
randomised trials of hip protectors. In the figure the trials divide into
cluster randomised studies or individually randomised trials. With the
exception of one study all the cluster trials have severe methodological
flaws and all show an impressive benefit of using hip protectors. This
contrasts with the individually randomised trials, which collectively
show no benefit of hip protectors. One explanation for the differences in
outcomes between the trials is that the individually randomised studies
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Figure 9.1:  Cluster and individually randomised trials of hip protectors
Source: Hahn et al., 2005.

are largely of better quality than the cluster trials. Cluster trials require
larger sample sizes, more sophisticated statistical analysis and they are
more prone to post-randomisation biases.

9.5 Alternative to cluster randomisation

An alternative to using a cluster design in many instances is to remain
with the individually randomised method and compensate for the dilu-
tion effects of contamination by inflating the sample size (Torgerson,
2001a). Let us suppose, for example, that there is some contamination
of the control group which will potentially dilute the treatment effect.
Steptoe and colleagues undertook a cluster randomised trial of coun-
selling for cardiovascular risk factors (Steptoe et al., 1999). To detect
a difference of 9 per cent in smoking prevalence using individual alloca-
tion would have required 1282 participants for 90 per cent power.
However, because cluster allocation was used 2000 participants were
needed due to loss in power through randomising by cluster.
Individually randomising 2000 participants would have given 90 per
cent power to show a 7 per cent difference in smoking prevalence,
which would have allowed 20 per cent of the control group to have been
‘contaminated’ by the intervention. The question arises: is it really the
case that the intervention patients will be able to deliver the treatment
to control participants as effectively as health care professionals and



Cluster Randomised Controlled Trials 105

contaminate 20 per cent of their fellow patients? However, contamin-
ation of control participants would have to exceed 30 per cent in order
for a cluster trial to be more efficient for a given sample size than the
individually randomised design (Torgerson, 2001a). In the Steptoe study
a difference in smoking prevalence was observed, but this was not stat-
istically significant: had they used individual randomisation, and had
the same difference been observed, then this would have been statistic-
ally significant.

An example of an individually randomised trial that was originally
intended to be a cluster design was a study by Spencer and colleagues
(2005). In this trial students were randomised to receive a financial
incentive to improve their academic performance. The trialists initially
wanted to randomise by school to avoid contamination; however, the
funder and schools did not like this approach, as no students in schools
allocated to the control group would receive an incentive. Consequently
the trialists allocated by individual but put into place conditions to
lessen the threat of contamination. Thus, teachers were not informed of
group allocation to avoid possible differential teacher effects on the stu-
dents. In addition, siblings were randomised to the same group.
Interestingly, despite the hypothesised threat of contamination there
were statistically significant improvements in the intervention group
compared with the control group (Spencer et al., 2005). The authors ran-
domised 534 participants. Now let us suppose that they had retained
their original design and randomised by school. If we assume 25 partici-
pants per school and an ICC of 0.01, then the authors would have
needed 662 participants for the same power (i.e., a 24 per cent increase),
or conversely the power of their achieved sample size would have been
reduced.

Trialists should always think very carefully about whether to use a clus-
ter design or not and, if possible, they should select individual random-
isation or possibly a mixture of both designs.

9.6 Partial split-plot design

It is possible to test for possible contamination by combining cluster ran-
domisation with individual randomisation in a so-called split-plot
design. In this design, we randomise at the cluster level, and then ran-
domise at the individual level in half of the clusters. We can then under-
take a within-cluster analysis and a between-cluster analysis. The power
consequences of losing some participants in the intervention cluster to the
control group are relatively modest, as the main driver of statistical power



106  Designing Randomised Trials

in a cluster trial is the number of clusters rather than the number of indi-
viduals. It can be a useful approach to test for contamination effects.

A health care trial that used a split-plot approach found no ‘contamin-
ation’ effects. In this trial of a lifestyle intervention among people at
high risk of cardiovascular disease by Wood and colleagues (1994), prac-
tices were randomised as clusters, but within the active treatment group,
half of the participants were randomised to act as ‘internal’ controls.
Despite fairly intensive lifestyle interventions, ‘contamination’ of con-
trol participants registered within the same practices does not appear to
have occurred.

In a trial to evaluate the role of praise to enhance students’ perform-
ance Craven and colleagues randomised in clusters, and within the
intervention clusters they also randomised at the student level. In the
intervention group the teachers were asked to increase the amount of
praise given when a student answered questions correctly or produced
good work. Within the intervention class, however, it was difficult for
the teacher to withhold praise from the control students. Consequently,
significant effects of contamination that diluted the effectiveness of the
intervention were observed within the individually randomised partici-
pants (Craven et al., 2001). Therefore, the sensible analysis was to com-
pare individuals in the intervention group who were praised with those
in the cluster controls who were not, rather than with the individual
controls.

Nevertheless, unless the threat of contamination is overwhelming,
such as in the previous example, it is best to avoid using a cluster design.
Indeed, if contamination is a perceived threat it is best to test this in a
pilot trial before finally settling on a cluster design.

A variation on the split-plot design has been proposed whereby
within each cluster some participants are randomised to the opposite
treatment (Borm et al., 2005). In a cluster trial comparing interventions
A and B, most of the participants in clusters randomised to intervention
A would receive treatment A (e.g., 80 per cent) whilst most of those allo-
cated to intervention B would receive treatment B. Some participants,
however, would be allocated to the opposite group. The reasoning
behind this is that, because some participants are receiving the opposite
treatment, then those who are recruiting individuals to the trial will
retain some blinding as to which group their cluster belongs. This
should encourage them to recruit similar numbers of participants and
avoid recruitment bias, as described earlier. By keeping the numbers of
participants within each cluster receiving the opposite treatment it is
hoped that the contamination effects will be minimised.
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9.7 Conclusions

Cluster randomised trials are essential to evaluate some interventions.
There are a number of methodological challenges inherent within the
cluster design and consequently these trials can be prone to bias unless
careful consideration is given to their drawbacks, and methods are put
into place to deal with the biases described previously.

Cluster trials, however, can be undertaken robustly. We need to be
aware that all the lessons learned from individually randomised trials
are equally applicable to cluster randomised trials. Lack of allocation
concealment is widely seen as being a major flaw for individually ran-
domised trials, with many methodological studies supporting this view.
The same threat is present for cluster randomised trials. We need to design
our studies to avoid this. As noted previously, we should, if possible,
identify individual participants before we randomise the clusters. If this is
not possible then the person recruiting should be masked to the allocation
of the cluster and, if possible, to the research question(s).

Another threat to the cluster design is post-randomisation exclusions
which must be undertaken by someone masked to the group allocation.
Sample size issues are also a problem. Cluster trials are almost always
invariably much larger than individually randomised trials, and sample
size calculations need to be used to identify the correct numbers of par-
ticipants required in the study.

The threat of contamination is widely used as a justification for the use
of cluster randomisation. It might be best to test this assumption using a
pilot study or accepting some form of contamination and consequently a
diluted estimate of effect. Generally it is best, if possible, to use an indi-
vidual design.

9.8 Key points

e In cluster trials groups of individuals are randomised.

e Cluster trials were first used in education when classes or schools
were the unit of allocation.

e They are more prone to post-randomisation biases (such as consent
bias) than individually randomised studies.

e They are challenging to do and require specialist skills.
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Unequal Randomisation

10.1 Background

In RCTs participants are usually allocated in equal numbers to either the
control or active arms. There are many instances, however, when it is
preferable to allocate more participants to one trial arm compared with
the other, i.e. to use unequal allocation. The ratio of group size can be as
large as is desired; however, generally it does not exceed 3:1 and more
commonly it is 2:1 or 3:2.

Most trials are designed by statisticians to obtain the maximum
amount of statistical power. Given a fixed sample size, it is nearly always
true that the largest chance of detecting, as statistically significant, a dif-
ference between the two groups will occur with groups of the same size.
Placing more participants in one group relative to the other reduces the
chance of observing a difference, although the power of the statistical
test does not greatly decline unless the ratio exceeds 3:1. For instance, if
we have a trial of 300 participants with approximately equal numbers,
then this might give us 80 per cent power to detect a certain difference.
However, if we allocate 200 to one group and 100 to the other group we
will have 75 per cent power to detect the same difference.

Some researchers believe that unequal allocation is ‘unscientific’ and
may lead to bias. This is untrue. Randomisation of participants assumes
that there is a probability that the participant will be entered into one of
the groups and this probability has no relationship to the participant
characteristics. The probability is usually 50 per cent; however, it can be
any other probability we choose (although obviously not 1).

10.2 Different costs of interventions

One of the main reasons for allocating more participants to one group
than to another is resource constraints or costs (Torgerson and Campbell,
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1997, 2000). For example, Hundley and colleagues allocated more partici-
pants to an evaluation of a labour ward run by midwives for resource
reasons (Hundley et al., 1994). The ward was only established for the pur-
poses of the trial, and needed to run as closely to full capacity as possible.
If equal allocation had been used the ward would have been under-utilised.

One treatment may be more expensive than another treatment. The
total cost of the trial can either be reduced, or more participants can be
recruited within the same budget by using unequal allocation. For example,
the MRC sponsored a trial of paclitaxel for the treatment of ovarian cancer
(ICON Group, 2002). The drug was extremely expensive, running into
many thousands of pounds per woman for the active therapy. The cost of
this trial was reduced by allocating more women to receive the control
treatment than to receive the active therapy. Similarly, a trial of colonoscopy
for the screening of colorectal cancer used unequal randomisation (along
with Zelen’s method) in favour of the control group (Atkin et al., 2001; UK
Flexible Sigmoidoscopy Screening Trial Investigators, 2002). Indeed, an
earlier trial of colorectal cancer screening could have been undertaken with
substantially lower costs if unequal allocation in favour of the cheaper,
control condition had been used (Hardcastle et al., 1996). Similarly, an RCT
of increased police patrolling could have obtained greater statistical power
had unequal allocation been used (Sherman and Wiesburd, 1995). In this
RCT 150 crime areas were identified as eligible for the study; however,
constraints on police resources limited the experimental treatment
(increased patrols) to 55 crime spots. The authors randomised 110 areas to
allow for an equal allocation ratio, thereby decreasing statistical power.
If they had instead allocated on an approximate 1.73:1 ratio (with 55 areas
in the intervention group and 95 areas in the control group) the experi-
ment would have obtained a useful increase in both statistical power
(from 80 per cent to approximately 88 per cent) and the chances of any
observed difference being statistically significant.

In an educational example where statistical power was lost consider
the study by Carlton and colleagues (1985) who evaluated a peer tutor-
ing programme. They used a subsample of control students to achieve
equal group size:

Of the 62 students in the control condition, 30 were selected at ran-
dom to achieve equal group sizes (i.e., n = 30 for all groups). (Carlton
et al., 1985)

Unequal randomisation reduces statistical power when the sample size
is fixed, but this is simply not the case when the barrier to increased
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power is the available resource. If an intervention resource is limited we
might increase the power of the study to detect a smaller difference by
increasing the sample size of the alternative group (Table 10.1).
Consequently the view that equal allocation is best for statistical power
only applies if the total sample size of the trial is fixed. If resources are lim-
ited then this no longer holds. However, there is a limit to the numbers
we can allocate to the larger group and still gain statistical power. From
Table 10.1 we can see useful gains are made for ratios of up to 3:1.

A trial that used unequal allocation ratios due to cost pressures was a
large randomised trial of hip protectors (Birks et al., 2004). In this trial
the study budget had to pay for the cost of hip protectors. To reduce this
cost a 2:1 allocation ratio was used. Although the total sample size had
to be increased to offset the reduction in power, this enabled the trial to
stay within the budget. Another study that encountered a similar issue
was a trial of calcium and vitamin D supplementation (Porthouse et al.,
2005). Supplements were provided by a pharmaceutical company (at no
cost). However, it was necessary for practice nurses to check that the
patients had no contraindications to the treatment before giving them
the therapy, and this had cost implications. By allocating more partici-
pants to the control group, resources to fund the nurses’ time were
saved. Another example relates to a pilot study of acupuncture (Salter
et al., 2006), which was constrained by the fact that the budget was only
sufficient for ten acupuncture treatments. By using unequal allocation
(2:1) the authors increased their sample size from 20 to 30, which in
turn increased the overall power of the study.

A simple and precise method of calculating the allocation ratio for
unequal randomisation based on cost is simply the square root of the
cost ratio. For example, if the cost of the intervention is four times the
cost of the control condition, twice as many participants need to be

Table 10.1:  Effect on detectable difference by increasing size of control group

Size of resource Size of Total Detectable Increase in
limited group unlimited group difference (%)  sample size (%)
100 100 200 19 -

100 150 250 18 25

100 200 300 17 50

100 300 400 16 100

100 500 600 15 300

Note: Calculations assume an event rate of 50 per cent in the control group with 80 per cent
power and 5 per cent significance.
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allocated to the cheaper treatment. Similarly, if the cost of the interven-
tion is nine times the cost of the control condition we will need to allo-
cate using a 3:1 ratio to make the most efficient use of our study budget.

10.3 Learning curve

Another reason for using unequal allocation is to allow more experience
of the new technique (Pocock, 1983), which will enable more subgroup
analyses to be undertaken. For example, a trial of a surgical intervention
will have more power if the effectiveness of surgery is compared when
surgeons are deemed to be at the ‘top of their learning curve’. A new
surgical procedure is generally ‘tried out’ on a number of patients in a
non-randomised evaluation. Such studies do not have to be peer reviewed
and are not seen by ethics committees. The surgeons gain experience
and patients are randomised only when the surgeons are confident
with the technique. By using this approach we do not know how long
it takes to train a surgeon in a new technique. If we had randomised
from the first patient we could then gauge the length of the learning
curve and allow the technique to be exposed to the scrutiny of an ethics
committee.

10.4 Review evidence

In their review Dumville et al. (2006a) found very few trials that used
unequal randomisation, and resource constraints were not often cited
for its use. The most frequently cited reason for its use was for clinicians
to gain experience of the novel intervention. Other reasons cited were to

Box 10.1: Review of unequal allocation

Dumville and colleagues (2006a) identified a sample of 65 trials that
used unequal allocation. Most trials (57 per cent) did not describe the
reasons for using unequal allocation. The majority of trials (84 per
cent) used an allocation ratio of 2:1 or less. Only 10 per cent of the
trials reported cost as the main reason for using unequal allocation.
Experience of the new treatment was the most commonly stated rea-
son. It was not clear in some trials whether or not the sample size cal-
culations had taken into account the loss of power due to unequal
allocation, with only 22 per cent of the studies giving enough infor-
mation to ascertain this.
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maximise recruitment (some trialists thought recruitment would be eas-
ier if participants felt they had a greater than 50:50 chance of receiving
one of the treatments), anticipated high drop-out rates from one arm
(although unequal allocation would help with the loss of power in this
situation, it would not deal with the potential of attrition bias) and eth-
ical reasons (fewer participants will be allocated to the group where
there is the greatest anticipated hazard).

In a trial of monetary incentives to improve educational outcomes
Spencer et al. (2005) decided to place more participants in the intervention
group because the trial funders were reluctant to accept equal allocation:

The third adjustment involved changing the sampling fracture from
a 50/50 split (i.e., equal proportions in the Stipend and Delayed
Stipend groups) to a 60/40 split to address the Foundation’s concerns
to serve as many eligible students as possible. (Spencer et al., 2005)

Allocation ratios favouring the intervention group may enhance recruit-
ment, as participants may be more likely to take part in the trial if
they think they have a greater than 50:50 chance of receiving the novel
intervention.

10.5 Some possible problems with unequal allocation

It is sometimes necessary to change the allocation ratio part way
through the trial. For instance, Porthouse et al. (2005) changed their
allocation ratio towards the end of their trial because the predicted cost
difference between the two groups was not as great as the actual cost dif-
ference found in the trial. Consequently a smaller allocation ratio
favouring the control group was more efficient than the ratio adopted at
the outset of the trial. If the allocation ratio changes in a trial it is neces-
sary to take this into account in the analysis, otherwise a simple arith-
metical phenomenon can introduce bias.

Consider a trial of two treatments that are equivalent in effectiveness
(see Table 10.2). In year one, 1000 participants are allocated to treatment
A and 2000 participants are allocated to treatment B. In year one 10 per
cent of participants in both groups experience an ‘event’. In year two of
the trial, the allocation ratio is changed so that 1000 are now ran-
domised to each group. If we add the total events and divide by the
numbers of participants in the trial, this gives 300 events among 2000
participants in treatment A and 500 events among 3000 participants in
treatment B, a higher event rate in treatment B than in treatment A
despite no difference in effectiveness between the two treatments.



Unequal Randomisation 113

Table 10.2: Changing allocation ratios part way through the trial

Year 1 (events) Year (events) 2 Total
Treatment A 1000 (100) 1000 (100) 300 events (15%)
1000 (100) 2000 participants
Treatment B 2000 (200) 2000 (200) 500 events (16.7%)
1000 (100) 3000 participants

Consequently, if the allocation ratio is changed part way through the
trial a variable must be included in a regression analysis to control for
this. Sometimes authors forget to do this. For example, Bech and col-
leagues (2007) undertook a randomised trial looking at the effects of caf-
feine on birth weight. The randomisation ratio appeared to change from
1:1 to an unequal ratio; however, the authors did not describe any
adjustment for the change in the ratio in the analysis.

Another problem with unequal allocation is that, as noted above, it
may be seen as being ‘unscientific’. One of us (DJT) has received referees’
comments on a number of grant applications criticising the use of
unequal allocation, despite the fact that in all cases this would have saved
resources. Indeed, one of the statistical referees for the Porthouse et al.
study (2005) stated that they found the allocation ratio (2:1) ‘extreme’.

10.6 Conclusions

Equal allocation is the best method of ensuring maximum statistical
power, given a fixed total sample size. Sample sizes, however, are rarely
fixed, and budgets are rarely open-ended. Consequently, in order to
obtain the greatest power from a randomised trial, it is better to use
unequal randomisation. For example, in the Hardcastle et al. trial (1996)
of bowel cancer screening, the authors would have achieved greater power
if more participants had been recruited and allocated in a ratio that
favoured the control group. There are other, non-cost, reasons for using
unequal allocation, such as monitoring a learning curve, and statistical
reasons, such as anticipated unequal variances. Unequal allocation ratios
are, however, generally under-used and should be more widely applied.

10.7 Key points

e Unequal allocation is under-used and should be more widely applied
because it can deliver a more powerful trial within resource constraints.

e [t is sometimes seen, erroneously, as being unscientific.

e Changing the allocation ratio part way through the trial should be
accounted for in the analysis.
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Factorial Randomised
Controlled Trials

11.1 Background

The cost effectiveness of a trial can be improved through the use of a fac-
torial design, where we can evaluate two interventions for the ‘price’ (in
terms of sample size) of evaluating a single intervention. A factorial design
can also reveal whether or not there is an interaction between two inter-
ventions. We can test if intervention A is better than no intervention
and whether intervention B is better than no intervention. We can also test
if interventions A + B work together in synergy, or are additive, or do
not work as well in the presence of each other. However, if we are intent
on observing an intervention-by-intervention interaction we need to
boost our sample size by a factor of about 4, and consequently reduce
the appeal of evaluating ‘two interventions for the price of one’. Few fac-
torial trials are powered a priori to detect interactions, and whilst inter-
actions are commonly held as an important reason for using a factorial
design, they are not usually justified in sample size calculations.

11.2 2 X 2 factorial

The simplest factorial design is a 2 X 2 factorial where we have four
groups rather than two. By way of illustration, consider a trial that tested
whether individual learning of the highway code was more or less effec-
tive than group learning (Gray et al., 1998). The researchers wanted to
compare a game based on the highway code with the highway code
book, and they did so by undertaking a 2 X 2 factorial. In Table 11.1 we
show the four cells in the resulting 2 X 2 table.

In this trial, three distinct hypotheses were tested: (1) Is group learn-
ing more effective than individual learning? This is tested by comparing
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Table 11.1: Factorial trial of learning the highway code

Individual Highway Code A
Individual Game B
Group Highway Code C
Group Game D

the groups A + Bvs C + D; (2) Is learning by a game more effective than
individual learning? This is tested by comparing A + Cvs B + D; (3) Is
there an interaction between the two styles of learning? First, group
learning was found to be no more or less effective than individual learn-
ing; second, game-based learning was found to be more effective than
the book learning; third, no interaction was found between the two
forms of learning, that is, game-based learning did not interact with
group learning such that it only worked or worked much better when
used in groups rather than when used alone. Note, however, this last
question was imprecisely addressed due to lack of statistical power to
rule out an important interaction term.

Factorial designs are commonly used in educational psychological
experiments in particular. They can be particularly valuable in ‘unpack-
ing’ a complex intervention by allowing us to test the interventions
singly or in combination. In the example above, had the researchers ran-
domised children to learn the highway code individually or to play the
game in a group, we would have observed a significant effect, but we
could not have known whether it was the game or the group learning
that was responsible for the increased knowledge of the highway code.

A 2 X 2 factorial is the simplest factorial design. If we want to exam-
ine a ‘dose response’ relationship we can increase the numbers of fac-
tors. For example, we might wish to test whether early morning classes
in numeracy are effective in improving numeracy abilities with students
with learning difficulties and also whether the use of computers is effec-
tive in this context, but we are not sure whether one or two extra morn-
ing classes a week is the most appropriate. In this instance we could
design a 3 X 2 factorial trial (Table 11.2).

There are a number of drawbacks to factorial designs. One problem is
their increased complexity, particularly if evaluating drug and non-drug
treatments. The process of recruiting participants may be confusing for
both researchers and participants, as some participants receive a combi-
nation of treatments and some do not.

An advantage of factorial trials is their ability to detect an interaction
effect. However, unwanted interactions can be also be a drawback.
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Table 11.2: 3 X 2 factorial design

No early morning 1 hour early morning 2 X 1 hour early
class and no computer class with no computer morning classes with
learning learning no computer learning
No early morning class 1 hour early morning class 2 X 1 hour early

but access to computer with computer learning morning classes with
learning in ‘normal’ computer learning

maths lessons

Interactions are when a treatment works more effectively in the pres-
ence of another intervention or conversely is less effective. For example,
in a trial of two drugs for the treatment of low bone mass there appeared
to be a negative interaction, that is, the sum of the two treatments was
not as great as their individual components (Finkelstein et al., 2003).
This is an important finding; however, if the interaction is unexpected
and unwanted it will lead to a reduction in the power to detect the main
effects of an intervention as we have to analyse the study as two separate
trials, which reduces the overall sample size. But, as noted previously, to
reliably detect an interaction requires an enormous increase in sample
size: consequently few factorial trials are sufficiently powered to detect
interaction effects and it is unlikely that even if there are interactions we
will have sufficient power to detect these.

11.3 Example of different factorial trials

One area where factorial trials tend to be used is in evaluating different
approaches to increasing questionnaire response rates. For example, in a
questionnaire survey about the use of HRT and the menopause it was
decided to test the relative effectiveness of a lottery or a payment to
increase response rates (Roberts et al., 2000). A factorial design was used
to test whether a £5 incentive or an entry into a prize draw for £50 had
an impact on response rates (Table 11.3).

Note, in this instance the factorial design was also combined with
unequal allocation to reduce the cost of the payments. The trial showed
that direct payment increased the response rate by 11 per cent, which
was statistically significant, whilst the lottery only increased response
rates by 5 per cent, which was not.

Another variation on the factorial design is to design a three-armed
study where one of the arms does not contain all of the interventions
(Table 11.4). In this study design we can evaluate whether A is better
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Table 11:3: Factorial design of incentives trial

No lottery Lottery

£S5 payment £5 £5 plus lottery N =125
No payment Nothing Lottery N =374
N =374 N =374

Table 11.4: 2 X 2 factorial with untreated
control group

A B Control
C A+ C B+C Control
D A+D B+D Control

than B and whether C is better than D but also whether these interven-
tions are better than no treatment or usual care.

11.4 Review evidence

In a systematic review McAlister and colleagues (2003) found that the
majority of factorial trials (82 per cent) (in cardiac care) were designed
for reasons of efficiency, that is, the trial authors wanted to test two or
more treatments within the same sample. The review authors noted that
interaction tests are notoriously underpowered, and suggested that an
interaction ratio greater than 1.25 or less than 0.80 should be considered
significant. In a hand search of all health care trials published in
December 2000 they found that only 1 per cent were factorial studies
(McAlister et al., 2003). Few trials (6 per cent) found statistically signifi-
cant interactions between the treatments, and in only one of the 44 tri-
als included in the review would this have led to an erroneous
conclusion. The authors therefore concluded that the factorial design
was safe to use and was an important method of increasing the number
of treatments that could be evaluated.

11.5 Analysing factorial trials

Ideally we should treat the data from factorial trials as two separate stud-
ies in order to obtain the most power from our sample size. However, if
there is an interaction between the two interventions then it may be
appropriate to analyse the groups separately. Consequently, the first
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analysis should use an interaction test, which, if not statistically signifi-
cant, will give an indication that the assumption of treating the data as two
separate trials holds. Factorial trial designs are sometimes used, but not
reported as such. For example, a large RCT looking at a health and work-
place intervention to improve return to work after illness appeared to use
a factorial design with four groups: health intervention; work place inter-
vention; combined interventions; no intervention (Purdon et al., 2006);
however, the authors analysed the study as four separate groups.

11.6 Conclusions

A factorial design is a useful and cost-effective method of evaluating dif-
ferent interventions within the same study population. In essence it gives
two opportunities of finding an effective intervention. Unfortunately, like
unequal allocation, the factorial design is under-used.

11.7 Key points

e Factorial trials enable investigators to evaluate two more treatments
within the same sample.
e They are under-used and should be undertaken more widely.



12

Pilot Randomised Controlled Trials

12.1 Background

Pilot studies are usually very helpful precursors to definitive RCTs.
Possibly the first educational RCT (Walters, 1931), which looked at the
role of counselling among undergraduate students, was later described
as an ‘introductory experiment’ (Walters, 1932). We would now describe
this trial as a pilot study. As discussed in a later chapter on recruitment
issues, pilots play an invaluable role in helping this aspect of an RCT.
However, they also play an important role in other design issues. In this
chapter we discuss some of the characteristics of pilot studies and
describe how they can be helpful when designing a definitive RCT.

There are two types of pilot study: external pilots and internal pilots.
An external pilot study is completed independently of the definitive
study, whilst the internal pilot is part of the main study and is treated as
a ‘run-in’ phase of the definitive study (Lancaster et al., 2004).

12.2 How do we define a pilot study?

As noted elsewhere, many trials across the social sciences are tiny and some
of these should probably only be considered as pilots for major trials
that have yet to be undertaken. A methodological review of health care
trials, specifically searching for pilot studies, found no formal definition
or description of what constitutes a pilot trial (Lancaster et al., 2004).
Therefore, we propose to define a pilot as a study that is either too
small to have a reasonable chance of detecting a minimally important
effect size (size of the difference between the groups at post-test), and/or
a study that is evaluating an incompletely developed intervention. In
terms of effect size we might consider that (as discussed in Chapter 13
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Box 12.1: Review of pilot trials

Lancaster et al. (2004) searched major medical journals in the years
2000-1 for pilot studies. They found 90 studies (2 per cent of all studies)
which appeared to be pilot trials. Half of the pilots indicated further
studies were needed but only four stated that they were specifically
undertaken in preparation for a larger RCT; most of the others were
piloting new treatment techniques.

on sample size and analysis) the smallest minimal difference that is
important is at least half an effect size, and at least a halving or doubling
of a dichotomous outcome. Note, however, these differences are on the
large side of what we can expect from an effective intervention. Generally,
effective interventions, especially if being compared against an active
control group, will tend to produce smaller differential effect sizes.
Consequently, a descriptive definition of a pilot study might be one that
has fewer than about 128 participants when the outcome is a continuous
variable. This definition will, however, classify many social science trials
as being pilot studies.

The pilot setting may differ from the setting of the definitive trial, and
may often be an explanatory type of study. We might undertake a pilot
under the best possible circumstances in order to test out the feasibility
of the study with the knowledge that if we cannot execute a study under
optimum conditions we are unlikely to successfully undertake the defin-
itive trial in less than ideal circumstances. The disadvantage, however, of
such an explanatory type of pilot as a precursor to a pragmatic trial, is
that its results may be less helpful for planning purposes and we may
over-estimate our ability to do the main trial.

12.3 Functions of a pilot study

Obtaining regulatory approval, for example, is a key barrier to the suc-
cessful start and completion of a trial. A pilot will identify any ethical
issues and other potential problems, such as possible breaches of health
and safety legislation, which need addressing before either the pilot or
the main trial can commence. For example, a pilot study of yoga for low
back pain identified an issue with liability insurance, which took a few
months to address. Had this issue arisen in the main trial it could have
jeopardised participant recruitment.

A pilot is often undertaken with a view to estimating the mean or the
standard deviation of a parameter in order to inform the power calculation
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for the main trial (Browne, 1995; Lancaster et al., 2004; Salter et al.,
2006). Sometimes an internal pilot is used to adjust the final sample size
of the definitive trial, although it can become problematic if the pilot
suggests a sample size smaller than the one originally intended for the
main trial. Because any effect size observed in an internal pilot is impre-
cise due to the relatively small sample size, we may mislead ourselves
into contracting the total sample size and increasing the risk of a Type II
error. Also, using an internal pilot can increase our Type I error rate, as
looking at the results of a pilot trial is tantamount to a preliminary sight
of the data, whereas our sample size for our definitive trial is for a single
data analysis only. Consequently, it has been recommended that the
effect of internal pilots on the sample size should be restricted in the sense
that the results could be used to increase the sample size of the defini-
tive trial but not to decrease it (Wittes et al., 1999). Note, if the sample
size of the main trial is driven by an estimate from a pilot one should err
on the side of caution. This is because any estimate of a parameter from
a pilot trial will have a high error value (Browne, 1995), simply because
of the relatively small sample size. In contrast, an estimate derived from
elsewhere will either be a fixed value, such as that deemed to be of clin-
ical, educational or economic importance and therefore will not have a
sampling error component. Even estimates derived from other stochas-
tic data (e.g., estimate from a systematic review) are likely to have smaller
error components than an estimate derived from a single small pilot.

A pilot can be used to look at the best ways of collecting outcome
information. For example, the UK BEAM pilot (Farrin et al., 2005) exper-
imented with two different methods of collecting cost data: a prospec-
tive diary or a retrospective questionnaire, and found that the latter
produced better information. Similarly, the pilot also examined the role
of two different measures of back pain before settling on one for the
main trial.

A pilot is also crucial at identifying the likely recruitment rates that
can be expected in the main trial (e.g., Farrin et al., 2005; Salter et al.,
2006). This allows the trialists to adjust inclusion/exclusion criteria in
order to maximise recruitment for the main trial. The pilot also allows
us to identify the likely retention and adherence rates for the study
(both of which may lead to an amendment to the sample size for the
main trial), and refine our cost estimates of the trial (which will affect
any grant costings and help to determine the most efficient allocation).

Refining the intervention, especially a complex intervention, is also a
vital component of the pilot. We might, for example, refine the duration
and dose of the intervention.
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Our choice of randomised design may be influenced by the pilot, and
we may decide to radically change our design or our intervention in
response to the pilot. The UK BEAM trial design, which was initially a com-
plex multifactorial split-plot design was extensively piloted (Farrin et al.,
2005), and as a consequence the cluster level randomisation was dropped;
education of primary care clinicians was adopted to boost recruitment;
outcome questionnaires were changed; and extra sites were recruited.

12.4 How big should a pilot be?

Sample size calculation for any study is an uncertain science. For a pilot
study it is more difficult, especially as part of the function of a pilot is to
gather information to inform the sample size. Before commencing a
definitive trial we should have identified the difference that either is
important to the practitioner, policy-maker, economist or consumer or
we should have noted differences from a meta-analysis or an epidemio-
logical study, which can then be used to determine the size of a trial.
With respect to a pilot study, we do not intend to power the trial to
detect this important difference, as the study will then no longer be a
pilot trial. It could be argued that we do not need to undertake a formal
sample size calculation; however, this feels somehow ‘unscientific’. It
may be best to set an indicative sample size, perhaps based on a surrogate
measure of outcome, to determine the difference in primary outcome.
We might, for example, run a pilot to look at differences in adherence
levels between groups. Outcomes for a pilot for the calcium and vitamin
D trial (Porthouse et al., 2005) were the proportion of contamination of
the control group and differences in falls between the two groups.
Contamination (i.e., participants in the control group going out to buy
calcium supplements) was important because the main trial’s sample
size might have needed adjusting for the potential for this. If the con-
tamination was deemed to be excessive then the main trial would not be
considered to be feasible. Because the level of contamination was com-
pletely unknown, the initial sample size calculations for the calcium and
vitamin D pilot were based on differences in falls incidence. Interestingly,
the pilot of that trial did not achieve its intended recruitment target.
Nevertheless, because of the problems identified in the pilot the main
trial actually exceeded its recruitment target (Porthouse et al., 2005).

A minimum sample size that we would recommend for a pilot study is
32. This sample size is the size a study needs to be to enable us to observe
a difference of one standard deviation (i.e., one effect size) difference
between the two randomised groups with 80 per cent power. This gives
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it some mathematical justification and if, unexpectedly, the interven-
tion is extremely effective we would have a reasonable chance of observ-
ing this. It is important, however, to note that even if we observe such a
difference and this is statistically significant, we should still continue
with the definitive trial. This is because with such a tiny sample size the
estimate will be imprecise, with large confidence intervals, and therefore
we will be unsure as to the true effectiveness of the intervention. An
exception to this might be if the pilot demonstrates a significant harm
of the novel intervention.

An alternative minimum sample size has been suggested as being 30
as this allows a reasonable estimate of a particular parameter, such as the
mean or the standard deviation (Browne, 1995). However, one should
not use the point estimate of the standard deviation; rather it is better to
use the upper 80 per cent confidence interval. This is because, as noted
previously, that point estimate, due the small sample size, has a high
chance of over-estimating the size of the standard deviation.

12.5 Should a pilot be randomised?

Often pilot studies use before and after pre- and post-test designs with-
out randomisation. For example, a study of hydrotherapy for people
with arthritis undertook an external non-randomised controlled trial
pilot (Cochrane et al., 2005). For the pilot phase of the study people
were recruited by advertisement, the intervention was tested out among
these participants, and their symptoms were compared with a similarly
recruited control group. Similarly, a pilot study looking at the herbal
treatment, black cohosh, for menopausal symptoms also used a before
and after design (Pockaj et al., 2004). The justification for using this
design in a pilot might be that, given that the pilot will not recruit a suf-
ficient number of participants to observe an important difference
between the groups anyway, we might as well put all the pilot partici-
pants in the intervention to gain more experience in delivering the
treatment. We can obtain some idea of the likely effect size by looking at
change scores. Ironically, it is often more difficult to get ethical approval
for a pilot RCT than a non-randomised pilot. Consequently many
researchers may be tempted to go for the easier and quicker option of
getting approval for the scientifically, and arguably ethically, inferior
study type. The problem with this is that we lose a lot of very important
information by not randomising. For instance, the recruitment rate,
which is a vital function of a pilot study, is likely to be incorrectly esti-
mated through a before and after study. Participants have no incentive
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to refuse recruitment if they know that they will inevitably receive the
new intervention if they consent to the study. Consequently the pilot
could grossly over-estimate the recruitment rate. We also would have no
idea of the retention rate in a non-randomised pilot. Because we are
including people who may not consent to be randomised then it is
likely they may comply with the intervention differently from those
who would consent to participate in an RCT.

In addition, if the pilot study is being used to inform the sample size
for the main trial then the estimate from the pilot may be exaggerated.
For instance, the pilot by Cochrane and colleagues (2005) observed an
effect size of 0.44. They based their sample size for their main study on this
estimate. However, the estimate was much larger than the one observed
in the definitive RCT, which may have led to their main trial being
under-powered. Similarly, the pilot study of black cohosh, which used a
before and after design, noted a 50 per cent reduction in menopausal
symptoms (Pockaj et al., 2004). A later definitive trial noted an approxi-
mate 30 per cent reduction in menopausal symptoms among women
taking black cohosh; however, there was no difference compared with
the placebo group (Newton et al., 2006). Indeed, the participants in the
definitive trial tended to have less severe symptoms than those in the
pilot. The reason for this could be that women with the most severe symp-
toms may have refused possible allocation to placebo and therefore the
pilot included women with worse self-reported symptoms. Consequently,
any effect was likely to have been exaggerated by regression to the mean
effects and change over time. Had a randomised pilot study design been
chosen instead it is less likely that these problems would have occurred.
Therefore, whilst a non-randomised pilot will provide important infor-
mation to plan the main study, a randomised pilot provides even more.
Furthermore, a randomised pilot, assuming it is published, can usefully add
to any meta-analysis of RCTs or its data can be added to the main study.

12.6 Study designs for pilots

Generally the study design for a pilot should be as similar as possible to
the anticipated design for the main study, as this allows for all the char-
acteristics of the definitive study to be tested before the main trial is
begun. Importantly, if the pilot is very similar to the main trial then it
may be possible to incorporate some of the data from the pilot study into
the main trial. Consider the UK BEAM pilot as an example (Farrin et al.,
2005). In this pilot, the main aims were to test the feasibility of the cluster
level randomisation as well as collection of secondary outcome measures.
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Within the cluster randomisation, participants were randomised individ-
ually to receive manipulation for their back pain, exercise or usual care.
The main outcome for the pilot was a back pain disability scale, which
remained the main outcome in the definitive study. Consequently, it was
possible to include pilot participants in the main study’s analysis for the
main outcome, and the information on the pilot patients added value to
the main trial. In a similar fashion participants taking part in two pilot tri-
als for fracture prevention (hip protectors and calcium supplements) were
also included in the main trial (Birks et al., 2004; Porthouse et al., 2005).

On the other hand, some researchers counsel against including exter-
nal pilot data within the main trial’s analysis. Lancaster and colleagues
(2004) argue that including an external pilot increases the Type I error
rate and can also introduce selection bias. The Type I error rate may be
inflated if we undertake two statistical tests: analysing the pilot and
again analysing the main trial. This slightly inflated rate would need to
be set against the benefits of an increased sample size. In terms of selec-
tion bias, inclusion of the pilot data is not likely to bias between trial
arms as the groups have been formed by random allocation. Pilot par-
ticipants, however, may be different from main trial participants in that
the inclusion criteria may have been changed. If this is the case then
there could be an interaction between the type of participant and the
intervention, which may dilute the treatment effect in the main trial. Or
the intervention in the pilot may have been incompletely developed so
as to appear relatively ineffective, which again may dilute the effective-
ness of treatment. The decision about whether or not the pilot partici-
pants should be included will depend on the features of the pilot study.
For instance we may never formally test differences between the groups
in terms of the main outcomes, so the Type I error rate will not apply.
For example, the pilots for trials of fracture prevention (i.e., Birks et al.,
2004; Porthouse et al., 2005) did not attempt to look at differences in
fracture rates as fewer than 200 participants were followed up for less
than twelve months, when the definitive trials required several thou-
sand participants followed up for years. Similarly, the UK BEAM trialists
did not undertake any between-group analyses of the pilot data in advance
of the main data analysis. The decision, therefore, to include or exclude
pilot data will depend upon the pilot and the main trial.

12.7 Discussion

A pilot study is immensely useful in planning the main trial. External
pilots are the most useful as they allow lessons learned from the pilot to
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be fully absorbed into the design of the definitive trial. However, exter-
nal pilots are likely to delay the start of the definitive trial, which is one
reason internal pilots tend to be attractive. Also it can be difficult to get
external pilot studies funded. An internal pilot is very useful, particu-
larly if it is possible to get some centres started early (in a multi-centred
study) and then lessons learned can be incorporated into the later centres.
A problem with internal pilots is that it may be difficult to fully absorb
the lessons learned from them and apply them to the main trial. For
example, if the pilot indicates an alternative recruitment strategy then
we would need to gain ethical clearance for this change, which will
delay the start of the main trial. We may also not be able to include some
pilot data in the main trial if the internal pilot demonstrates that different
outcomes need to be collected.

Although we have distinguished between internal and external pilots,
sometimes the two concepts merge. For example, in the UK BEAM pilot
(Farrin et al., 2005), the calcium and vitamin D pilot and the hip protector
pilots were all originally external pilots; however, because their designs
did not differ radically from the main study designs their data were
included in the main results.

Pilots are sometimes difficult to fund and pass through ethics com-
mittees. Their sample sizes are generally too small to demonstrate an
important difference between the groups. Consequently some ethics com-
mittee members may view them as unethical, believing that the research
cannot inform policy or practice decisions. This is untrue, as the pilot will
inform these decisions through its impact on the definitive study.

12.8 Key points

e Pilots are extremely useful for informing the definitive study design.

e They are not large enough to identify important differences in out-
comes; therefore any differences in outcomes should be treated cau-
tiously.

e They can be used to inform sample size calculations, study design,
recruitment rates, and the feasibility of the intervention.
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Sample Size and Analytical Issues

13.1 Background

In this chapter we consider some basic statistical issues around trial
design and analysis. Most trials, particularly large and well conducted
trials with little or no attrition, require only the simplest statistical
methods, which usually give similar, if not the same, results as more
complicated approaches. We do not look here in detail at methods of
analysing trial data. Rather, the reader is directed to other books that
focus specifically on statistical methods (e.g., Bland, 2000; Altman,
1991). We focus instead on a few important statistical design issues that
are important to trial design, and give an overview of the main statisti-
cal issues of trial design and analysis.

13.2 Sample size

We want to be confident that any difference we find in a trial between
the interventions has not occurred by chance. The probability of a
chance finding, for any given effect size, declines with increasing sam-
ple size. Nevertheless, there is always a possibility that any difference we
observe will have occurred by chance, no matter how large the differ-
ence or how big the sample size. This possibility is commonly reflected
in the statistical significance level or p value. By convention the p value
usually chosen is 5 per cent (p = 0.05). This value is arbitrary, and in
some non-medical areas of research the 10 per cent value is used more
commonly (e.g., economics). For instance, in a crime and justice trial,
Sherman and Weisburd (1995) used a p value of 0.10 to denote statisti-
cal significance. Indeed, there is controversy over the obsession with a
single point estimate of statistical significance (Sterne and Davey-Smith,
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2001). An effect size that is significant with a p = 0.04 compared with a
p = 0.06 is not materially different but can lead to widely different inter-
pretations. Some researchers and practitioners enslave themselves to
particular p values, when a p value should be only used as a guide to the
interpretation of the study’s results.

A common problem that occurs when interpreting the results of a trial
is a Type II error. This error occurs when we conclude there is no differ-
ence between the groups when in reality there is a difference. This can
occur when a trial is too small. A trial must have sufficient participants
to demonstrate that any observed difference between the outcomes did
not occur by chance. The smaller any potential difference, the larger the
trial must be for such a difference to be ‘statistically significant’. Unless
a trial is large enough to show any observed difference as being statisti-
cally significant we cannot be sure whether that difference is a ‘true’ dif-
ference or just a chance effect.

A common misperception is that a small p value (e.g. p < 0.001) is an
indication of a strong effect. The p value is driven by the sample size of
the study and the frequency of events. Therefore, even a very small, triv-
ial, difference can be highly statistically significant as long as the sample
size is of sufficient size. Therefore, to ascertain whether an intervention
has a large or a small effect we should look at the size of differences
between the groups rather than the p value.

Sample sizes needed are inversely related to the differences we wish to
detect. The smaller the difference, the larger the sample size required to
demonstrate such a difference. However, determination of the correct
sample size is less related to statistical considerations than to whether or
not any difference is of educational, clinical, policy or economic signif-
icance, which may depend upon the context, cost and nature of the
intervention. It is often difficult to specify in advance of the trial the
estimate of effect that is of clinical or educational significance. A review
in the field of health care research by Burnand et al. (1990) attempted to
ascertain what authors of studies define as being a worthwhile differ-
ence. The reviewers found that authors considered a ratio of two means
greater than 1.20 to be important, with ratios of 1.35 and 2.00 being per-
ceived as substantially significant and highly significant respectively
(Burnand et al., 1990). In other words, if a control intervention obtained
an effect size of 0.50 and the novel intervention achieved an effect size
of 0.60, this would be classed as significant. For differences in rates these
are 0.28, 0.35 and 0.65 for significant, substantially significant and
highly significant respectively, whilst for the odds ratios of two rates the
corresponding values are 2.2, 2.5 and 4.0. The authors, however, caution
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against accepting these differences without question as they are based
on an average of papers that were published in an unrepresentative sam-
ple of journals.

Systematic reviews of randomised controlled trials in education and
health care have shown that these are usually too small to be able to
detect a worthwhile difference between the groups. In other words there
is a high chance of experiencing a Type II error. For example, a system-
atic review of seven randomised controlled trials evaluating the effec-
tiveness of ICT on spelling instruction found that the trials ranged in
size from only 14 participants to 79 participants (Torgerson and Elbourne,
2002). Similarly, a review of seven randomised trials evaluating the
effectiveness of volunteers in literacy learning ranged from 16 partici-
pants to 99 participants (Torgerson et al., 2002). Such trials are too small
to observe important educational differences that an effective interven-
tion might produce. Indeed, we might only really consider these trials to
be exploratory studies.

In health care research there is a long history of trials that are too
small (Freiman et al., 1978). In a review of 96 placebo-controlled trials
published in major general medical journals (i.e., BMJ, Lancet, JAMA, New
England Journal of Medicine) since 1990, it was found that 58 per cent
published before 1997 were under-powered, whilst 33 per cent of trials
published since 1996 were still under-powered (Torgerson et al., 2002).
However, a trend towards improvement was noted particularly among
studies published in major medical journals (Torgerson et al., 2002).

The same problem also affects some crime and justice trials (Sherman
and Weisburd, 1995). An experiment that concluded that extra policing
did not reduce crime levels was widely criticised as being too small and
susceptible to a Type II error (Sherman and Weisburd, 1995). It took a
larger, adequately powered trial to detect a modest intervention effect.

Sample size estimates are usually based on a range of factors. The
point estimate of a systematic review of previous evidence can be used.
If, for example, a review of a group of smaller trials showed a 30 per cent,
not statistically significant, reduction in events, then this might be
taken to be the difference on which to power a trial. A less rigorous
approach, which is very often used, is to estimate how many partici-
pants can realistically be recruited into a study and then calculate back-
wards to work out what likely difference in outcome these numbers of
participants would detect (Goodman and Berlin, 1994). This difference
is then judged as being ‘clinically’ significant. Unfortunately, this approach
too often leads to sample sizes that are simply too small to detect plau-
sible differences. In education psychology research the ‘black box’ of
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sample size calculation seems to be based around the ‘magic’ number of
30, which appears to have developed from ‘custom and practice’ or is
possibly driven by the fact that most class sizes are around 30.

An alternative approach to sample size estimation is to use economic
criteria. For example, it was argued in a trial for treatment of menorrha-
gia that the study should be planned to show an 8 per cent reduction in
re-treatment rates between a laser treatment versus other forms of resec-
tion (Torgerson and Campbell, 2000). This difference was based on the
cost differences between the two treatments. If laser therapy, which was
initially more expensive, reduced re-treatments by 8 percentage points
this would be ‘cost-neutral’.

As a general rule, however, a trial should be sufficiently large to detect
at least a half a standardised difference between groups when the out-
come measured is a continuous variable (e.g., blood pressure, spelling
test scores) or a halving or doubling of a dichotomous variable (e.g.,
deaths or exam pass rates). A standardised difference is a change meas-
ured in standard deviation units. An improvement in the effect size of
1.0 describes an improvement of an average 1 standard deviation in the
intervention group compared with the control. One can show that, for
a trial to detect a difference of 1.0 in effect size, requires 32 participants
(i.e., 16 in each group) to have an 80 per cent power to show the differ-
ence with a significance level of 5 per cent, or 42 participants for 90 per
cent power. As the effect size halves, the numbers in the trial quadruple.
To detect an effect size of a half requires 128 participants; a quarter
requires 512.

Many trials use some form of test with a continuous measure as the
outcome (e.g., changes in blood pressure, changes in a spelling test). We
can describe an effect in terms of differences in standard deviations or
standardised effect sizes. A standardised effect is calculated by taking the
differences in post-test means and dividing these by a ‘pooled’ standard
deviation of the post-test scores, or the standard deviation of the control
group. A standardised effect of 1 or more is considered a very large dif-
ference. Such an effect might only occur when an intervention is com-
pared against no intervention.

More commonly, and realistically, we would want to investigate the
effectiveness of a new intervention versus the traditional method. If the
control group is also receiving an effective intervention, differences can
be expected to be much lower. Therefore, an effect size as low as 0.20 is
much more likely.

We can convert effect sizes into numbers needed to treat or teach
(NNT): the number of people required to receive the new intervention
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in order to get one extra person through an educationally important
threshold. For example, we might consider an intervention worthwhile
if it means that one extra person in a class of 25 will pass an important
exam. If we look at Table 13.1 an NNT of 25 is equivalent to a very small
effect size of only 0.1.

One problem with NNTs is that, although they can usefully describe
the likely effectiveness of an intervention, they can be misleading. An
NNT of 100 for an intervention that is inexpensive (e.g., aspirin or seat-
ing children in rows) is worth having but an NNT for an expensive inter-
vention (e.g., personal laptop computers, beta interferon) or something
with significant unwanted side-effects, may be too high.

As well as the difference we wish to detect and the statistical probabil-
ity of that difference, another issue regarding sample size is power.
Statistical power relates to the chance of finding that a pre-specified dif-
ference is statistically significant. Again, the larger the sample size the
greater the reliability to detect a difference, if one actually exists. Statistical
power is commonly set at 80 per cent or 90 per cent, that is, given a sam-
ple size we would have an 80 per cent chance of detecting a specified dif-
ference, with a p value of 0.05. For example, let us assume we want to
detect a half a standardised difference in an intervention comparing two
methods of instruction. Assuming we have individually randomised the
children we would need approximately 128 individuals (i.e., 64 in each
group) to give us 80 per cent power to detect such a difference with a p
value of 5 per cent.

Table 13.1:  Effect size and numbers needed to treat or teach (NNT)

Mean effect size Number of extra Numbers needed to
students passing a 50% treat or teach
test threshold

0 0% -

0.1 4% 25

0.2 8% 13

0.3 12% 8

0.4 16% 6

0.5 19% 5

0.6 23% 4*

0.7 26% 4

0.8 29% 3*

0.9 32% 3

1.0 34% 3*

*Rounded to the nearest whole number.
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13.3 Calculating sample sizes

Most hand calculations diabolically strain human limits, even for the
easiest formula. (Schulz and Grimes, 2005)

There are numerous statistical packages that will compute relatively com-
plex formulae to estimate sample size calculations. Rather than discuss these
we show a simple approach that gives a very close estimate of the ‘true’
sample size which can be easily undertaken using a handheld calculator.
Lehr described a relatively simple approach to estimating sample size
(Lehr, 1992). The method generates samples that are very similar in size
to the more usual complex methods. However, it over-estimates the
sample slightly for small samples — a good thing. For a sample size of 80
per cent power at a S per cent significance level we divide 32 by the
square of the effect size (42 for 90 per cent power). For example, let us
assume we want to detect an improvement of an effect size of 0.30 in a
quality of life measure, such as the SF36. This measure has a mean of 50
with a SD of 10 (i.e., 3 points). If we square 0.30 we get 0.09; dividing
this into 32 gives us a total sample size of 356 (i.e., 178 in each group).
The formula for the total sample size, which can be memorised, is:
Approximate N = Z—f
For dichotomous outcomes the calculation becomes a little more com-
plex. First, we need to estimate a standardised effect size, which is calcu-
lated as follows. Let us suppose we want to detect a difference of 10
percentage points between 35 per cent and 45 per cent in a dichotomous
outcome. First we need to estimate the variance. We do this by taking an
average of the two proportions (i.e., (0.35 + 0.45)/2 = 0.40). Next we
multiply this by 1 — the average (i.e., 0.60), which gives us 0.24. We then
take the square root of this, which is about 0.49. We can now work out
a standardised effect size by dividing the difference, in this instance 0.1
by the measure of the variance (0.49), which gives us 0.204. We now
divide 32 by the square of this, which gives us a sample size of 768.
Again, the formula can be memorised relatively easily. We use a (in
our example 0.45) to mean the mean (average) proportion, and d to
mean the difference between proportions (in our example, 0.1).

2
d

Jal — a)

Approximate N = 32/




Sample Size and Analytical Issues 133
Algebraic manipulation gives a formula, which may be easier to remember.

2
Approximate N = 32/ d ZJ
a—a

13.4 Worked examples

In a study of various interventions among men who assaulted their
female partners (Dunford, 2000) the re-assault rate was 20 per cent
within twelve months. In order to design a trial of an intervention to
reduce this, the sample size calculation would be as follows. An effective
intervention should show a halving of the assault rate from 20 per cent
to 10 per cent. The effect size, therefore, is 0.2 — 0.1 = 0.1 (i.e., 10 per cent).
The average proportion is 0.15 (i.e., (0.1 + 0.2)/2). Using the formulae
above, we can do the following calculation:

d?=x0.1=0.01;a=0.15 and a2 = 0.0225; a—a? = 0.1275;
d?/a — a2 = 0.078

The sample size therefore is 32 divided by 0.078, which equals 408.
Using a more accurate sample size formula from a computer program
gives us a sample size of 398, slightly lower, but the simpler method
gives a reasonably good estimate.

If, on the other hand, we want to observe differences in means rather
than proportions and we are interested in observing an effect size of 0.2
we simply divide the square of this (0.04) into 32, which results in a
sample size of 800. Again using a computer package the sample size is
slightly lower at 784.

13.5 Sample sizes and cluster trials

The preceding discussion on sample sizes relates to individually ran-
domised trials. Many educational trials randomise groups of individuals
in clusters. In this case the usual statistical assumption of each person in
the trial being independent no longer holds true. Consider a class of
children randomised as a group. Their outcomes will not be independent
of each other, as they all have the same teacher. It is also unlikely that
the children within the class will be a random sample. These factors
mean the outcomes of children within a group will be correlated.
Statisticians refer to this correlation as an intra-class correlation coef-
ficient (ICC). This has an effect on the sample size: the bigger the ICC
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the larger the sample size required to overcome this natural clustering.
The same applies to patients of a given doctor, or offenders with the
same probation officer; all share some characteristics with other mem-
bers of their ‘group’ or cluster.

To adjust for this clustering in the sample size calculation an estimate
of the ICC is required. This can be difficult as these are often not avail-
able until after the study has been completed. Therefore, one needs to
look to other, similar, studies to estimate an ICC. Unfortunately, these
are not routinely reported and the ICC needs to be estimated through
informed guesswork. Once an estimate of the ICC is available we can
then calculate an ‘inflation factor’ by which to increase our individually
randomised calculations for a cluster trial. The process of calculating a
relevant sample size for a cluster trial is as follows. First, we estimate an
important difference such as 0.5 of an effect size. Second, we calculate a
sample size for an individually randomised trial (i.e., 128). Third, we
take an estimate of the ICC (let us assume this to be 0.01). Fourth, we
assume classes of 25 children are randomised. Fifth, we apply the fol-
lowing formula: 1 + ((cluster size — 1) X ICC).

25 — 1 = 24 (where 25 is the size of cluster) multiplied by ICC
(0.01) = 0.24 plus 1 (inflation factor) = 1.24 times 128 = a total
sample size of 158 (i.e., a 24 per cent increase).

Note, although this implies that we would ‘only’ need to randomise six
schools, it is generally recommended that we should allocate at least
eight clusters in order to achieve some balance at the cluster level
(Murray, 1998). Some researchers suggest that ideally at least fourteen
clusters should be included (Donner and Klar, 2000).

It is important to note the following issues regarding the sample size
for cluster trials. The first is related to the cluster size. The larger the clus-
ter size the greater the inflation factor. Assume for example we ran-
domise by school rather than class and the average school contains 500
children. This will give an inflation factor of nearly six times (i.e., 0.01 X
(500 — 1) = 4.99 + 1 = 5.99). In other words, our sample increases from
128 for individual randomisation to 158 for class as the unit of alloca-
tion to 766 if school is the unit of randomisation. If the ICC is greater
than 0.01, say 0.05, which is not uncommon, our sample size will rap-
idly increase (i.e., 128 to 282 for class allocation to 3322 for school ran-
domisation).

The numbers of clusters in a cluster randomised trial can be reduced if
we include powerful predictors, such as baseline scores, in our calculations.
Indeed, the same applies for individually randomised trials. For instance,
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if the baseline test has a correlation of 0.5 with the post-test, then we
may be able to reduce our sample size by 25 per cent (Donner and Klar,
2000). Cook argues that the usual ‘rule of thumb’ of 40 to 50 schools
needed to demonstrate an educationally important difference can be
reduced to as few as 22 schools when the pre- and post-test correlation
is as high as 0.85 (Cook, 2005).

13.6 Use of confidence intervals

Even the largest trial showing a very strong effect will still have some
uncertainty around the estimate of effectiveness: the smaller the trial,
the bigger the uncertainty. Statistically, a relatively simple method of
expressing this uncertainty is through the use of confidence intervals. If
a trial is undertaken 100 times then 95 of the 100 confidence intervals
will include the true value. If an intervention has an effect size of 0.25
we can put a confidence interval around this. For example, this might be
a confidence interval between 0.20 and 0.30. From this we can be fairly
confident that the intervention has an effect size of between 0.20 and
0.30. Therefore, the reporting of confidence intervals that surround a
trial’s results is absolutely essential to express the range of uncertainty
surrounding the result of even the largest trial.

For example, in his experimental study of preventing violence towards
women partners Dunford (2000) noted that 83 per cent of men in the
intervention group did not re-assault their partners compared with 79
per cent of the men in the control group. Whilst this difference was not
statistically significant, the confidence intervals around the 4 per cent
difference were — 3 per cent to 12 per cent. In other words, the experiment
could not have ruled out a benefit as large as 12 per cent in favour of the
intervention or a harmful effect of 3 per cent. On the other hand, Bourduin
and colleagues (1995) found a 45 per cent statistically significant reduction
in arrests of juvenile offenders when using a multi-systemic treatment
compared with a control intervention. The 95 per cent confidence inter-
vals around this estimate ranged from 31 per cent to 58 per cent. Therefore,
we can be reasonably confident that the intervention reduced further
arrests by at least 31 per cent and possibly by as great as 58 per cent.
Interestingly, neither of these studies actually reported confidence inter-
vals in their papers.

Confidence intervals are a function of sample size and outcome fre-
quency: the smaller the sample size, the wider the confidence intervals.
In Table 13.2 we show the effect sizes of four randomised trials from edu-
cational research. Three of the four trials note similar, positive, effect sizes
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Table 13.2: Effect sizes and confidence intervals

Study Sample size Effect size 95%

(Study context) Confidence intervals
Rimm-Kaufman et al., 42 0.43 —-0.18 to 1.04
1999

(Use of volunteers)
Baker et al. 2000

(Volunteers for literacy 84 0.45 0.01 to 0.88
instruction)

Berninger et al., 1998 24 0.59 -0.23to 1.41
(Spelling instruction)

Martinson and 1115 0.021 —0.096 to 0.138

Friedlander, 1994
(Adult education)

Note: If the confidence intervals pass through 0 then the difference is not statistically significant.

for the intervention. However, only one of these studies shows a statisti-
cally significant benefit of the intervention (Baker et al., 2000). The other
two studies, despite showing a similar effect, have inconclusive results.
Thus, Berninger et al. (1998) show a fairly large effect size but this is not
statistically significant. One of two conclusions can be drawn from this
study: (1) there is truly no effect of the intervention; or, (2) there is a ben-
efit but it is not statistically significant because of the small sample size.

By looking at the confidence intervals we can see that the interven-
tion used by Berninger et al. (1998) has a potentially large effect on
spelling abilities. Therefore we should try to replicate this study and see
whether we can confirm these results in a much larger trial. In contrast,
the fourth trial in the table, a large study of an adult education pro-
gramme by Martinson and Friedlander (1994), showed only a small
effect with relatively tight confidence intervals. Whilst there remains a
possibility of a larger effect size, the upper 95 per cent confidence inter-
val indicates that the possibility of a very large effect size is small and
therefore it would not be worthwhile to undertake another trial of this
particular intervention, or indeed to implement it.

Confidence intervals are useful to represent uncertainty but it is
important to note that the point estimate from a study is the most likely
single estimate of the true value of the intervention. The likelihood of
the true estimate being another value declines as we move towards the
extremes of the confidence interval. An erroneous belief is that the true
estimate has an equal probability of falling anywhere along the confi-
dence interval. It does not.
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13.7 Analysis of trials with a clustering effect

Many trials contain data with a clustering effect. This means that the
individuals who contribute the data are not independent of each other.
This is most frequently the case with cluster randomised trials. If a trial
is randomised by cluster then the effect of the cluster needs to be taken
into account in the analysis. If we use analytical methods appropriate
for non-clustered data, these will tend to yield optimistic statistical sig-
nificance levels. Even trials that are individually randomised can be
problematic, as so often the intervention is dependent upon the teacher
or therapist. Therefore, the outcomes of the participants will correlate
with fellow participants who have the same teacher, doctor, therapist or
social worker etc. This correlation between participants needs to be
taken into account in any analysis.

Some trials include both individual randomisation and cluster alloca-
tion. For example, some studies randomise as individuals but family
members are randomised together (e.g., Sinclair et al., 2005). We cannot
treat the family members as independent units and, therefore, we need
to take this into account. Sinclair and colleagues (2005) allocated indi-
vidual students, but siblings were put into the same group. However, in
their analysis the authors treated siblings as individuals. The simplest
approach here would have been to choose an ‘index’ sibling (e.g., the
oldest) and only include this participant in the analysis. Although this
wastes information, it is more conservative than treating the partici-
pants as individuals and will not yield too small a p value. However,
there are other statistical approaches to dealing with this problem that
do not waste information. It is beyond the scope of this book to discuss
the statistical analysis of trials with clustering effects; suffice to say that
some form of multi-level modelling is usually required to adequately
deal with these data.

If we randomise clusters with relatively similar sample sizes with con-
tinuous outcomes, then the simplest method of adjusting for the clus-
tering effects is to simply take the mean value of each group and do a
t-test on the group means. Or, if there are differences in cluster size, a
regression based approach, using cluster mean as the dependent variable
with group assignment and cluster size as explanatory variables, is likely
to be a simple method yet generates estimates similar to more complex
approaches. We can adjust for other covariates using the same approach
and calculate the cluster means of the covariates. However, when plan-
ning any trial it is important to involve a statistician in the design as
well as the analysis of the trial.
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13.8 Sample size calculation: what is current practice?

Many trials do not report the underlying justification for their sample
sizes and do not report any a priori sample size calculation at all. Many
trials are under-powered, that is, the studies are not large enough to
detect, as statistically significant, differences that are worth knowing about
even if they exist. In a review of the quality of trials in health care and
education, many trials were found to be under-powered (Torgerson et al.,
2005). An examination of a sample of trials published since 1990 found
that only about 50 per cent of trials published in major medical journals
were of an adequate size. Education trials were worse, with only 16 per
cent being of an adequate size. No educational trial out of 84 included
in the sample gave a rationale for its sample size. Since the review was
published we have become aware of a few trials in educational research
that have reported an a priori sample size calculation (see for example,
Brooks et al., 2006; Spencer et al., 2005). Most educational trials are sim-
ply too small to detect modest but important effects on outcomes.

13.9 Baseline or pre-test analysis

The first analysis many trialists perform is a statistical comparison of the
baseline or pre-test characteristics of the randomised groups. Many stat-
isticians do not recommend this approach (e.g., Altman and Doré¢,
1991). Indeed, the major UK medical journals (Lancet and British Medical
Journal) do not allow the p values of these baseline comparisons to be
included within the table showing the comparability of the randomised
groups. There are a number of reasons why it is thought generally not
helpful to undertake baseline comparisons.

Assuming we have undertaken our randomisation properly then any
baseline differences between the two groups will be, by definition,
attributable simply to chance. Confirming this is not particularly help-
ful. In fact by doing the tests we can mislead ourselves. This is because,
inevitably, there will be some statistically significant differences between
the two groups if we undertake sufficient numbers of tests. If we do
twenty statistical tests of baseline variables (not uncommon), we will on
average find at least one that is statistically significant by chance. If we
find a variable that is in imbalance we might be tempted to ‘correct’ for
this imbalance using regression analysis. However, unless the variable is
strongly predictive of outcome this will not help us, and may result in a
loss of power, and in some instances may actually bias the results.
Indeed, a p value is not a good guide to whether or not we should adjust
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for a variable in an analysis. A variable that strongly predicts outcome,
but is in imbalance by a non-statistically significant amount, can still
produce a biased post-test analysis. Consequently, what we should do is
specify in advance the key variables that we think are important to the
outcome of the study. These variables should then be included in an
adjusted analysis irrespective of whether or not they are in balance
through the randomisation process. Including strongly predictive vari-
ables will improve the precision of our treatment estimate and therefore
this should be done.

There is a dissenting view to the legitimacy of baseline testing, how-
ever. Berger (2005), for example, views baseline testing as a legitimate
method of identifying trials that may have been subverted. If key vari-
ables (e.g., age, pre-test scores) are in imbalance and there is a trend for
several predictor variables to favour one of the treatment groups, then
one might regard this as evidence for subversion and consequently treat
the trial with a degree of scepticism. On the other hand, for subversion
to be noticeable on baseline tests, it would have to be quite gross (Berger,
2005). In a systematic review of trials of calcium supplements nearly all
of the trials had baseline imbalance but none of these was individually
significant (Trowman et al., 2006). It has been suggested that trials using
blocked allocation should undertake a statistical test based on the out-
come variable and relate this to the position of the participant on the
block. Such a test may be more sensitive to subversion (Berger, 2005).

Another problem with looking at comparability of randomised groups
is how this relates to analysed groups. If we use 100 per cent intention
to treat and have no loss to follow-up, then at baseline the groups will
reflect the prognostic characteristics of the groups at follow-up. However,
in many health care trials, there is often 10-20 per cent attrition and
therefore in these cases we do not have data on a substantial minority of
participants. Baseline tests will tell us nothing about the comparability
of the analysed groups when we have participants who are lost after ran-
domisation.

Some trialists realise that attrition is a problem which may bias their
results. One approach widely used to look at this potential problem, is to
compare the baseline characteristics of those who drop out with those
who remain in the trial. For example, in a trial of parenting classes
Hutchings and colleagues (2007) noted that 17 per cent of the intervention
group were lost to follow-up. To assess whether this introduced bias in
observable variables, they compared the baseline characteristics of those
who were lost to follow-up with those who remained in the trial and
noted that there were no statistically significant differences (Hutchings
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et al., 2007). However, this is not of great interest because it is unclear
how we would interpret any statistically significant or non-significant
findings when we do this. If the differences are not significant this does
not mean that participants have not selectively removed themselves dif-
ferently from the randomised groups. For example, in a trial of inter-
ventions A and B, where 50 per cent of the participants are women we
might find that 25 per cent of women leave Group A and 75 per cent of
women leave Group B giving an average of 50 per cent of females in the
attrition group, which would be the same as the total sample in the
analysed group (Table 13.3). Even if we only compare the participants from
Group A who were lost to follow-up with those remaining, as Hutchings
et al. (2007) did, whether or not this is significant is still unhelpful. Even
if the attrition group is significantly different from those who remain in
the trial, we cannot conclude that the two groups that are analysed are
not in balance. Therefore, it is of more interest to look at the compara-
bility of groups that are actually analysed (Dumville et al., 2006b).
Therefore, in the hypothetical example described above we would exam-
ine differences in gender between the groups after we have excluded
those who have been lost to follow-up. If we do this we see that the
groups are in imbalance with respect to gender, whereas we would not
see this if we had either analysed all randomised patients or compared
those who were lost with those who were not. Therefore, there may be a
case for statistically testing the comparability of analysed groups as
opposed to the randomised groups if these groups differ due to attrition.
In Table 13.3 we show the different strategies for testing baseline values.
In our view, unless we suspect subversion, only the last comparison
should inform our analysis and interpretation of the trial; however, this
is very rarely done.

Table 13.3: Different strategies for comparing pre-test characteristics of
randomised groups

Intervention group Control group
N =100 N =100
Number of women randomised 50 (a) 50 (b)
Number of men randomised 50 (c) 50 (d)
Loss to follow-up women 12 (e) 38 (f)
Loss to follow-up men 10 (g) 10 (h)

Baseline comparison of all randomised participants: = a + cvsb + d.

Loss to follow-up comparison with treatment follow-up: =e + f + g+ hvs(a —e) +
b-H+c-g+(d-h).

As analysed comparison: = (a + ¢) — (e + g) vs (b +d) — (f + h).
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13.10 Post-test analysis

It is important to pre-specify the principal analytical strategy, ideally in
a published trial protocol. This is to prevent accusations of ‘data dredg-
ing’. We should also always use an ITT analysis as the main analytical
strategy for the trial. We can use other techniques for secondary analy-
ses; however, the ITT is the most robust approach and remains faithful
to the randomised groups.

Within an ITT analysis there are two broad analytical strategies: unad-
justed and adjusted analyses. For large sample sizes both approaches
usually give similar results, although the unadjusted analysis tends to
have larger confidence intervals. Often both adjusted and unadjusted
results are presented. The difference between the two approaches is that
the unadjusted approach simply compares either the means or the pro-
portions of the groups. The differences in the proportions or means are
calculated and a statistical test, such as the Student’s t-test or Chi
squared test is applied and confidence intervals are calculated. An
adjusted analysis is more complex and usually involves some form of
regression-type approach, but given modern software and computers is
relatively easy to do. If we use an important predictor of outcome, an
adjusted analysis will substantially reduce the standard error, and conse-
quently reduce the width of the confidence intervals. This occasionally
makes a non-statistically significant result into a significant one. Also
for small trials there is a greater risk of a chance imbalance among a
powerful predictor variable and this may change the estimate of the
intervention effect.

In Table 13.4 we illustrate the effect that adjusted analyses can have
on the results of a trial. In the first trial we have used data from an RCT
of physiotherapy for neck pain (Klaber-Moffett et al., 2005) where the
outcome was a measure of neck pain. The correlation between pre- and
post-test was a modest 0.40, and the randomisation ensured that both
groups were very well balanced in terms of their pre-test scores. The
adjusted and unadjusted estimates of the treatment differences at twelve
months were very similar: nearly a two-point difference favouring the
control group. However, the baseline value does predict the follow-up
measure. Consequently we would expect a more precise estimate of
effect if we were to use this information in our analysis. Adjusting for
the effect of baseline test reduces the standard error of the estimate from
about 0.86 to 0.79, and this reduces the width of the confidence inter-
vals. Note, however, the estimate of the treatment effect is very similar
to the unadjusted analysis. In this instance the adjusted analysis does
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Table 13.4:  Effect of adjusted and unadjusted analyses on trial results

Trial Correlation Estimate (standard p value and
coefficient* error) confidence interval

SPRINTER 0.40

(Klaber-Moffett

et al., 2005)

Unadjusted 1.91 (0.86) P = 0.026, 0.23 to 3.58
analysis

Adjusted

analysis 1.94 (0.79) P = 0.014, 0.39 to 3.49

ICT trial 0.78

(Brooks et al.,

2006)

Unadjusted 1.41 (1.09) P =0.20, — 0.74 to 3.56
analysis

Adjusted 1.66 (0.71) P =0.02, 0.26 to 3.07
analysis

*Correlation between pre-test values and post-test.

not change our interpretation of the trial’s findings. It merely increases,
slightly, our confidence in the results.

In the second example we use data from a recent trial in education
(Brooks et al., 2006). This trial evaluated the use of ICT to improve chil-
dren’s literacy skills. The adjusted estimate is a bit larger than the unad-
justed estimate. This is because in this instance, by chance, the groups
were more unbalanced at baseline, so adjusting for the pre-test scores
gives us an estimate of the effect, had the groups been better balanced at
baseline. Note, the correlation coefficient between pre- and post-test in
this instance is much greater than for the health care trial, which tends
to be more typical of educational trials compared with health care stud-
ies. Because pre-test is a more powerful predictor of post-test in this field,
then the standard error is more reduced with a greater effect on the
width of the confidence intervals. In this instance the result changes
from being not statistically significant in the unadjusted analysis to sta-
tistical significance in the adjusted results.

By using important covariates we can increase the power of our trial,
which is usually easier to do than the alternative approach to increasing
study power, that is, by recruiting more participants. In education trials
the correlation between pre and post- test is usually somewhat greater
than in health care trials. Consequently, collection of accurate pre-test
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data in educational trials is usually worthwhile and can add significant
study power. Nevertheless even in health care trials pre-test data are usu-
ally helpful in an analysis.

Adjusted analyses are more precise than unadjusted analyses yet some
researchers present unadjusted results. There are a number of reasons for
this. First the unadjusted analysis is simpler and easier to understand
and prevents the possibility that the findings were due to statistical
trickery, rather than to the effect of an intervention. Second, sometimes
we do not know which variables predict outcomes. Third, sometimes
the design of the trial precludes us from collecting important predictors
of outcome. Generally we would recommend using adjusted analyses as
the main analysis if strong pre-test data are available.

13.11 Separate group paired analysis

One quite widespread, and bizarre, method of analysing trial data is to
analyse the trial data as two before and after studies and use paired tests
and then compare the two p values. What commonly happens is that
one paired test is statistically significant and this is reported whilst the
other is not. The intervention is deemed to be effective on the basis of
the paired statistical test. Given that we are interested in the between-
group differences not within-group differences this is the wrong method
of analysing the data. Such an analysis is prone to regression to the
mean effects and it is quite possible that, possibly due to chance imbal-
ances, one may see that one p value is significant and the other is not,
yet when the correct analysis is undertaken there is no significant dif-
ference between the groups.

13.12 Dealing with non-adherence

In many trials, some participants allocated to the intervention do not
receive it, because they receive the ‘control’ treatment. We need to
include them within the group they were randomised to in order to
avoid bias. This will dilute any observed treatment effect. When Fisher
designed trials in the 1920s and 1930s in agricultural research non-
adherence was not an issue. Plants do not need to consent, they do not
move, and generally they do what the experimenter wishes them to do.
Furthermore, in crop research we are not interested in the fate of an
individual plant. If a new fertiliser triples crop yields but kills half the
plants then overall this is a good thing for the farmer: this is not true in
human experiments. In the social sciences we are interested in the effect
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on individuals and their outcomes. In human trials of any description,
whether they are medical, educational or in the field of crime and jus-
tice, participants change their minds or move houses or schools.
Consequently, in many social science trials significant proportions of
participants are allocated to, but do not receive, the intended interven-
tion. We use ITT analysis to avoid bias, and therefore dilute our esti-
mates of treatment effects.

As noted before, many trialists try to correct for non-adherence by
undertaking an on-treatment or per protocol analysis. Unfortunately
this approach can produce a biased estimate of effect. An alternative
method, which, in principle, is unbiased, is to use an ‘instrumental’ vari-
able approach to the analysis (Hewitt et al., 2006). As a worked example
of this, let us consider a randomised trial of hip protectors (Birks et al.,
2004). In this trial, women at risk of hip fracture were offered hip pro-
tectors to protect their hips if they fell. In the intention to treat analysis
2.8 per cent of the intervention group had a hip fracture compared with
2.4 per cent of the control group. However, only about 38 per cent of the
intervention population reported using the hip protectors on a regular
basis. Therefore, the lack of any effect may have been due to non-
compliance rather than to any intrinsic ineffectiveness. A key question
that ITT cannot answer is: what is the effect of hip protectors on a woman'’s
risk of hip fracture if she wears them regularly?

Instrumental variables can potentially answer this question in an
unbiased manner. The approach is based on two assumptions: (1) if the
control group had been offered hip protectors then the same proportion
would have used them as the proportion observed in the intervention
group; (2) merely being offered hip protectors will not have any effect
on hip fracture risk. Assumption 1 must be true as this is a randomised
trial, whilst we can assume the second assumption to be true in this
instance, as there is no reason why simply being offered hip protectors
will reduce the risk of fracture. In Table 13.5 we can see that 38 per cent
of the intervention group complied with the intervention. Consequently,
we can assume that there will be a similar proportion of compliers and
non-compliers in the control group had they been offered hip protectors.

In the ‘non-compliant’ control group we can assume that the hip frac-
ture incidence (i.e., 2.9 per cent) will be the same as the non-compliant
intervention group because merely being offered hip protectors should
not reduce fracture risk. As we know the total numbers of hip fractures
in the control group, we can then estimate the likely fracture rate in the
remaining cell of the table, which in this instance is 1.5 per cent. We can
see that the relative risk of hip fracture (relative risk = 1.73) is actually
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Table 13.5: Risk of hip fracture by compliance status

Hip protector (N = 1387) Control (N = 2781)
Compliers (38%) 14/529 = 2.6% 16/1061 = 1.5%*
Non-compliers (62%) 25/858 = 2.9% 50/1720 = 2.9%*
Total hip fractures 39/1387 = 2.8% 66/2781 = 2.4%
ITT RR = approx 1.17
(i.e., 2.8/2.4)

*Estimated proportions.

higher in this example than the ITT analysis suggests (i.e., relative risk =
1.17). This analysis suggests, therefore, that hip protectors are unlikely
to be an effective intervention even if people use them on a regular basis.

Instrumental variable analysis or complier average causal effect
(CACE) analysis tends to be widely used by economists when analysing
trials with non-adherence. Health care trialists are less familiar with the
technique and tend to use the flawed per protocol or on-treatment
analysis to look at the effectiveness of treatments for those who actually
use them. This is unfortunate because CACE analysis is relatively simple
to undertake and is less likely to give us a biased estimate of the true
likely treatment effect. For example, Kling et al. (2005) evaluated an ini-
tiative of giving families living in poor areas housing vouchers on the con-
dition they moved to an affluent area. Some of those randomised to the
intervention did not, for whatever reason, actually leave the poor neigh-
bourhood. The authors quite correctly included them in their original
randomised group. However, this will have diluted the effectiveness of the
intervention. One outcome was the number of arrests for violence among
the children of the families in the experiment. Using ITT the authors noted
an average decline of 0.061 arrests for violence per person; however, using
the instrumental variable approach the decline was much greater at 0.147
per person. Therefore, the people who chose to stay, despite being offered
the voucher, were more likely to have had characteristics that put them
at greater risk of being arrested for violent crime. The instrumental variable
approach effectively controlled for this confounder and demonstrated that
the children of those families who acted upon the offer of a voucher would
have a 0.147 reduction in arrests, not the 0.061 implied by ITT analysis.

13.13 Discussion

Statistical analysis of trials should be relatively straightforward. Sample
size estimation can be more complex in the sense that the most difficult
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part is not the arithmetical calculation; rather, it is agreeing on a differ-
ence that is important to detect: this is the main challenge of sample size
estimation.

Prior sample size estimates can be informative when designing an
RCT. It seems that, too often, sample sizes are chosen on the basis of
logistics rather than on the need to ascertain an important difference.
Trials in the social sciences and health care research often do not report
the reasoning behind their sample size calculations. Many trials are too
small to detect modest but worthwhile differences. It is important to
consider the size of sample before we undertake a trial, as potentially
useful interventions may be rejected due to a Type II error. Related to
this is the issue of precision. Studies need to report with confidence
intervals the likely range of estimates where the true effect will lie.

Randomised trial analysis is relatively straightforward compared with
analysis of non-randomised data. If the trial has been conducted properly,
and if there has been little or no loss to follow-up, relatively simple ana-
lytical methods are required to ascertain effectiveness. Non-randomised
data are generally much more difficult to analyse.

13.14 Key points

e Sample size estimates can be important to ensure that the trial is large
enough to detect important differences.

e Many trials, particularly in the social sciences, are too small.

e Statistical comparison of baseline characteristics is commonly under-
taken; it is only necessary if subversion of subversion of allocation is
suspected.

e Adjusted analysis is a useful technique for obtaining a more precise
analysis.

e Instrumental variable analysis may be a useful technique in the pres-
ence of non-adherence.
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Measuring Outcomes

14.1 Background

A crucial issue is how to measure whether or not something works using
a good measure of outcome. The choice of outcome measure will clearly
depend upon the research question. Because of the nature of this book
we do not deal with specific measures of outcome; rather, we discuss
some general rules.

An ideal outcome measure will be sensitive to important effects, reliable,
in that it will return the same findings when participants are re-measured
in the same circumstances, and valid, in that the outcome instrument
will give us an accurate assessment of the actual outcome we wish to
measure. This latter issue is important in that many outcomes that are
measured are not ‘true’ outcome measures. For example, quality of life
measurements do not truly measure a person’s quality of life — they only
give a general indication. ‘Objective’ measures of outcome, such as death,
may not give us the complete picture. We may delay death by a statistically
significant amount through a therapeutic intervention, but the quality
of life lived may not be judged worthwhile. Consequently an interven-
tion that merely prolongs life without improving its quality may be less
desirable than a treatment that improves quality of life (assuming we
can accurately measure this) but does not extend life.

14.2 Ceiling and floor effects

A good measure of effect will be valid and sensitive to important changes.
If there is an improvement in outcome we need a measure that can reliably
detect this. We also need a measure that can record the ‘spread of effect’
within our sample of participants. Some trials use outcome measures

147
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that suffer from ceiling and/or floor effects. For example, in education a
ceiling effect may be due to a test that is too easy for the participants.
Similarly, if we administer a test that is too difficult we will not observe
a difference because the scores of the participants cannot fall below zero.
In a randomised controlled trial designed to evaluate the effectiveness of
computer-assisted instruction on the word recognition skills of students
aged between seven and nine versus a traditional paper and pencil
approach (Lin et al., 1991) ceiling effects can be observed in all of the
post-tests. In a twenty-item multiple-choice test designed to measure
word recognition accuracy the mean post-test scores were 19.06 for the
intervention group and 19.51 for the control group. Therefore, this out-
come measure was not appropriate because it could not measure a ‘true’
spread of outcomes in both groups. In this instance a moderate effect for
the control group of —0.53 was statistically significant (95 per cent con-
fidence intervals —0.12 to —0.95). But the ‘true’ measure of effect could
have been much larger if the test had not suffered from ceiling effects.
In a two-group study by Foster and colleagues (1994) evaluating a
phonological awareness programme, there were 34 students in the inter-
vention group and 35 in the control group. However, the authors found
no effect of the intervention and this may have been partly due to the
ceiling effect of their outcome measure, which they fully acknowledged
in their write-up:

The most obvious explanation for the lack of training effects on the
STOPA in this experiment is the extremely high scores that were
obtained by children in both groups on the posttests. Nineteen chil-
dren in the experimental group and 17 children in the control group
obtained either perfect or near perfect (29 or 30) scores on the posttest.
(Foster et al., 1994)

In health care, quality of life measures, which are prone to ceiling and
floor effects, are commonly used to measure outcome. Ideally, to gain
the most statistical power we need a measure that has a mean of about
50 per cent so that there is no ceiling or floor effect of the test.

14.3 Surrogate outcomes

In addition to using tests with appropriate statistical properties, ideally
we should use tests related to the most important outcome. For instance,
a student may perform well in a spelling test of a list of words learned in
a spelling intervention. However, the more educationally significant
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outcome would one that measured accurate spelling when writing text.
Therefore, one could argue that to evaluate a method of spelling instruc-
tion, in addition to a spelling test one should also include a holistic writing
score. Similarly, in health care research ‘surrogate’ markers of outcome are
commonly used. For example, changes in blood pressure may be used to
establish the effectiveness of a treatment for the prevention of stroke.

As a general rule it is best to choose a clinically, economically or edu-
cationally important measure of outcome rather than a proxy measure.
Proxy or surrogate measures are those measures of outcome, such as blood
pressure, that are not clinically important either to the patient or their
physician. Having an elevated blood pressure is of little consequence to the
patient: in contrast, having a stroke is of major importance. Using sur-
rogates as a measure of outcome can be misleading (Fleming and DeMets,
1996). For example, changes in bone mineral density (BMD) are often used
as surrogates to measure the effectiveness of treatments for the preven-
tion of osteoporotic fractures. Some treatments, such as sodium fluoride,
substantially increase BMD, but also increase fractures (Riggs et al., 1990).
Similarly, those trials that used suppression of cardiac arrhythmia as a
surrogate measure of benefit instead of mortality had literally fatal conse-
quences for many thousands of patients who were subsequently exposed
to this as a routine treatment (Silverman, 1997). In Table 14.1 some sur-
rogates and their clinical outcomes are listed.

Table 14.1: Comparison of surrogate with true outcomes

Area Surrogate outcome “True’ outcome

Cardiovascular Changes in blood pressure Stroke Heart attack
Changes in lipid levels Quality of life
Restenosis

Osteoporosis Changes in bone density, Fracture
markers of bone turnover

Cancer screening Tumours detected Mortality from cancer

Vaccination Antibody levels Clinical symptoms of

disease

Wounds Debridement Healing

Partner abuse Feelings of anger or hostility Reduction in assaults
to partner

Literacy Correct spellings in a list Accurate spelling in

written text
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Surrogates are widely used in health care research because observing a
difference in a surrogate measure requires much smaller sample sizes
and shorter follow-up compared with clinical outcomes. Trials designed
to observe changes in bone mineral density require only a few hundred
participants, whereas trials designed to observe a fracture endpoint
require many thousands of participants. A reliable surrogate of outcome
can be invaluable as it allows a smaller and generally more rapid evalu-
ation of a promising therapeutic agent to be undertaken with all of the
attendant benefits that this will produce. In early evaluations surrogates
can be used to confirm a biological hypothesis, but before the treatment
is licensed a larger study should be undertaken to check that the changes
in surrogate outcomes translate into changes in clinical events.
Otherwise this can be misleading. Fleming and DeMets (1996) describe
a small trial of interferon designed to examine its effect, using a surro-
gate, which was changed to a larger study looking at infection rates
among children with chronic granulomatous disease. The original study
sought to determine whether treatment with interferon would increase
superoxide production (the surrogate), which it was believed would
be reflected in a reduction in infections. However, the trial showed a
70 per cent reduction in infections, but did not show any effect on
superoxide production. Had the trial continued as planned, looking at
the surrogate, a highly effective treatment would not have been recog-
nised. It is highly probable that effective treatments have been lost at an
early stage because the mechanism of their effect was not fully under-
stood and the inappropriate surrogates were selected.

In educational research surrogates can be misleading. An RCT was
designed to evaluate the use of a spell-checker to aid students in identi-
fying and correcting misspelled words in a pre-written story compared
with students making spelling corrections by hand (Jinkerson and
Baggett, 1993). The authors came to a positive conclusion about spell-
checkers based on surrogate outcomes (the difference between the num-
ber of words spelled on the oral post-test and the number of misspelled
words corrected in the story) although the study did not detect any
effect on the primary outcome (post-test spelling accuracy). A statisti-
cally significant difference in the number of spelling errors corrected in
relation to the children’s spelling knowledge favoured the children in
the computer group (who corrected more words than they were later
able to spell), but no difference was detected between correction rates
(number of words corrected divided by the number of words identified
as errors) and spelling knowledge.
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14.4 Qualitative outcomes

Generally trials use quantitative measures to assess outcome. However, it is
possible to use qualitative data and compare the findings between the two
groups. This has the advantage that any differences between the groups are
likely to be due to the intervention. As an example, Leahy and colleagues
undertook a pilot trial to ascertain the experiences of patients who had
their heart surgery consultation audiotaped (Leahy et al., 2005). The inter-
vention patients were given their audiotapes and the control patients were
not given them. As this was a small pilot (N = 20) qualitative interviews
were used in order to help plan the larger, definitive trial.

14.5 Discussion

Collecting the right outcome measures on as many trial participants as
possible is a crucial element for the conduct of a rigorous study. It is
important to collect outcomes that are as close as possible to the ‘true’
outcomes. This is because surrogate outcomes can mislead. Nevertheless
surrogate outcome measures can be useful in helping to guide research
at its earliest stages. For interventions that are likely to be delivered to
vast numbers of people, it is important we evaluate such effects using
outcomes that are relevant to the participant and society: not simply
those of interest to the scientist.

14.6 Key points

e Most trials use ‘surrogate’ outcomes.
e Surrogates can mislead.
e [tis important that important participant outcome measures are used.
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Recruitment into Randomised
Trials

15.1 Background

One of the most important aspects of undertaking an RCT is obtaining
sufficient numbers of participants to allow us to demonstrate or exclude
an important effect. Health care trials seem particularly vulnerable to
under-recruitment, particularly trials that use ‘trickle’ or sequential
recruitment, where we cannot identify all those in our sample of partici-
pants at the same time. For instance, if we want to recruit to a surgical
trial for appendicitis we need to recruit participants as they arrive for
surgery for the condition. Similarly, if we are recruiting to a study test-
ing the effect of a court order on children absent from school, we need
to recruit as the parents are referred to court. In contrast, other trials,
such as a study of a school-based intervention means we can recruit the
schools and then the children, achieve our sample and then randomise
all the participants at the same time. Recruitment to this sort of trial
tends to be easier and quicker as we can identify a list of schools, mail
out to the schools and then the parents of the children in the schools,
all of which can be undertaken relatively quickly and easily. In contrast,
with sequential recruitment we have to estimate the numbers of poten-
tial participants arriving in a clinic, estimate how many are likely to be
eligible and assume that this will remain constant. All of these estimates
are subject to error, and often the numbers are over-estimated, leading
to shortfalls in total recruitment and a lower sample size than is ideal.
Trials that do not achieve their target sample size run the risk of incur-
ring a Type II error: that is, erroneously concluding there is no significant
difference between the groups when there is. If recruitment is slow and
difficult, research funders may erroneously conclude that they would get
better value by using other, less rigorous, research designs. In this chapter

152
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we look at the issue of recruitment. Note, however, that most of the
information in this chapter is based on expert opinion and experience.
As trialists we know that this tends to form the lowest grade of evidence
in any evidence-based decision-making. In this instance the issue of
recruitment into randomised controlled trials has, ironically, rarely been
addressed using a randomised controlled trial.

15.2 Recruitment difficulties

Recruitment into health care randomised trials is notoriously difficult.
For other areas this may not be the case. In our experience, educational
trials tend to find it relatively easier to recruit participants than health
care trials. Few health care trials manage to recruit their target sample
size within the specified time-frame. Many never make their prior sam-
ple size. In Table 15.1 Puffer and Torgerson (2003) undertook a survey of
all individually randomised trials published in the BMJ and Lancet for
the years 2000 and 2001: 41 per cent of trials experienced recruitment
problems with significantly more multi-centred trials having problems.
Indeed, if we also include trials that needed a time extension, 57
per cent of all studies had problems. It is worth noting that this is a
biased sample leading to an underestimate of the size of the problem.
Trials that collapsed due to poor recruitment and trials with poor recruit-
ment would not have been published in these prestigious journals.

In another study of 122 trials funded by major UK grant agencies (i.e.,
Medical Research Council and NHS HTA programme) it was found that

Table 15.1: Recruitment problems in a sample of trials

Trial characteristic Number (%) or average
Conducted in primary care 28 (36)
Multi-centred trial 53 (67)
Experienced recruitment problems 32 (41)

Needed time extension 28 (35)

Need time extension or under-recruited. 45 (57)

Target recruitment time (mean, median IQR) 19, 12, 8-24
Needed extra funds for extension 15 (19)

Average age of participants (mean, median, IQR) 50, 57, 39-65
Target sample size (mean, median, IQR) 863, 296, 160-938
Achieved sample size (mean, median, IQR) 851, 303, 140-874
Average under-recruitment (mean, median, IQR) 171, 76, 6-336
Average time extension, months (mean, median, IQR) 6,1, 0-9

IQR: interquartile range.
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only 31 per cent of the trials achieved or exceeded their recruitment tar-
get (McDonald et al., 2006). Indeed about 45 per cent failed to achieve
more than 80 per cent of their recruitment rate. More than half (54
per cent) of the trials in the sample required an extension to meet their
recruitment target, and of these, thirteen trials achieved their target with
the extension (McDonald et al., 2006). Note, in this study the preva-
lence of poor recruitment was worse than in the Puffer and Torgerson
survey, as the latter was probably biased towards trials that recruited.
Nevertheless, even this survey would have been biased towards the ‘bet-
ter’ trials as the two funding agencies only tend to fund groups they con-
sider likely to be able to undertake a scientifically satisfactory study.

Poor recruitment has the effect of reducing the power of the trial to
find important differences, or if recruitment is slow, delaying the com-
pletion of the trial and increasing its expense. There are a number of rea-
sons for poor or slow recruitment.

15.3 Administrative, bureaucratic barriers to recruitment

The sequence of planning and executing a trial starts with the submis-
sion of a trial protocol to a funding agency. Often this is a two-stage
process. An outline application is submitted to, say, the Medical Research
Council, which is sent out for peer review and then considered by a
panel of trial experts. If the design is considered viable the MRC writes
to the applicants asking for a full application. This first step can take
about six months. If successful, the applicants are asked to re-submit a
longer, more detailed, proposal. This again is peer reviewed and consid-
ered by a committee of trial experts. This process can take a further
twelve months. Therefore, it is quite common for at least eighteen
months to elapse before funding is confirmed and this is before a single
patient has been recruited to the study.

Once funding has been agreed there are other hurdles to cross. The
most important of these is ethics approval. Indeed, gaining ethics
approval is usually a pre-requisite for trial funding being confirmed.
Ethical approval can lead to considerable delay and postpone the start of
the trial by several months. More recently another hurdle has been
introduced into the NHS: research governance. After obtaining ethical
approval, trialists in the UK now need to obtain research governance
from the appropriate health care trust. If the trial is a multi-centred
study then all the centres involved need to obtain research governance.
Delay to the start of a trial because of this can be substantial. In a multi-
centred trial we recently undertook, delays in approval ranged from two
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weeks to thirteen months! Therefore, once funding, ethical and now
research governance approval have been gained it is likely to be at least
two years before the trial can start.

15.4 Participant identification

Occasionally, trials compete with other studies for the same patients.
Scientifically, it is usually valid for patients to participate in more than
one trial, as the randomisation process will ensure that participants in
one study will be evenly allocated across the various arms of the other
study. On the other hand, ethics committees often object to patients
being approached for inclusion into more than one trial. Nevertheless,
careful collaboration between different trialists may mean that in some
instances participants can be included in more than one trial and a con-
vincing case may be put before an ethics committee. Indeed, in a fac-
torial design participants are by definition taking part in more than one
experiment.

Once the trial starts it is usual to find that the estimates of the num-
bers of eligible participants have been over-optimistic. If clinicians are
asked for estimated numbers of eligible participants during the planning
stage of the trial they usually over-estimate the numbers, due to several
reasons. First, it may be that the clinician, who has an interest in the
area, may see most of the eligible participants within his or her depart-
ment and extrapolate those numbers to his colleagues, which leads to an
over-estimation. Second, the total number of people with a given con-
dition makes no allowance for the numbers that have to be excluded
because they do not wish to take part or because they have a medical
contra-indication.

The following scenario usually unfolds during a trial. Recruitment
starts: it starts badly. Everyone working on the trial puts this down to
‘teething’ problems and they are hopeful it will improve. This is usually
not the case as recruitment is often best during the early months of the
trial, as this is where collaborators are at their most enthusiastic.
Nevertheless, hope usually triumphs over experience and it is agreed to
review the situation after a few months. At the next review the researchers
discover that recruitment has worsened: this leads to panic. Remedial
measures are taken, such as trying to get more centres on board, which
requires ethical approval and leads to more delay. The measures taken
may improve recruitment slightly but never enough, and the trial either
closes or has to seek an extension of its funds to continue recruitment
for longer or, commonly, a mix of the two.
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There are several ways of trying to prevent this unhappy situation:
these suggestions are based on experience and therefore are not strictly
‘evidence-based’. First, before the trial starts be pessimistic and assume
recruitment is going to be dire. Therefore, consider and implement all
methods to improve recruitment at the start of the trial. Second, and
extremely important, try to run a pilot phase before the main study.
In a multi-centred trial this might mean getting local ethics committee
approval for one centre ahead of the main trial in order to test out
recruitment strategies and to gauge recruitment rates. Data from the
pilot can be invaluable when assessing recruitment rates. Pilots are not
always possible; indeed, in one trial ethical approval for the pilot phase
of the study was only granted after the main trial was nearly completed.
Apparently the ethics committee could not understand the concept of a
pilot! Third, streamline the recruitment methods. One of the main bar-
riers to recruitment is not that potential participants refuse to take part;
it is that clinicians do not have the time to explain the trial to them and
recruit them into the study. Therefore, anything that can remove some
or all of the work of recruitment away from the clinician is likely to be
beneficial. Fourth, if possible use ‘database’ recruitment, i.e., a list of
potential participants. People on this list can be mailed at relatively low
cost and high speed to ascertain whether they wish to take part in the
trial. As long as the database is sufficiently large, recruitment is then
merely mailing out to as many people as are needed in the trial. A frus-
trating recruitment problem occurs when participants have to be recruited
from a clinic. Clinics can be cancelled due to various crises that erupt peri-
odically in the health service and if they are cancelled participants can-
not be recruited. Further, if the time of a research nurse is being paid for
to recruit participants then this money is lost and cannot be reallocated.

In a multi-centred trial some centres always recruit better than others.
As a rule of thumb with multi-centred trials 80 per cent of the participants
tend to be recruited from 20 per cent of the centres. Unfortunately, it is
nearly impossible to predict in advance which of the 20 per cent of centres
will be good at recruitment.

If the financial arrangements of the trial are such that each centre
receives an allocation of money to recruit participants this often means
that those centres that do not or cannot recruit are a financial drain on
the trial. To avoid this it is sensible to have contracts drawn up with
specified targets. For example, the centres might have a target of recruit-
ing 100 participants every six months for a half time research nurse’s salary.
After six months, if this target is not met, the funding can be either with-
drawn or reduced and the savings reallocated to more successful centres.
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There are various methods of improving recruitment, one of which is to
involve the media. Depending on the intervention one can appeal directly
to the public to contact the trial centre if they wish to take part in the
study. An example of this was a randomised trial of hip protectors for the
prevention of hip fractures (Birks et al., 2004). Hip protectors are used in
specially developed underwear which protects the wearer’s hip should they
fall over. The start of this trial provoked a relatively large media interest
due to mirth caused by the intervention. This interest was capitalised upon
by appeals during television and newspaper interviews for those interested
in taking part to contact the trial centre. This publicity enabled the trial
to recruit several hundred participants in a relatively short space of time
(Birks et al., 2004). Other approaches such as using posters or leaflets may
be helpful although we have not noted that they have been very effective.

15.5 Financial incentives

Financial incentives will improve recruitment; however, ethically this can
be problematic. Ethics committees will not usually allow direct payments to
participants, unless it is to reimburse ‘reasonable’ travel expenses. Payments
to clinicians or their employers to recruit participants may be more jus-
tified as it does take time out of normal clinical activities to recruit trial
patients. Trials that rely on the goodwill of clinicians to recruit participants
for no reimbursement are unlikely to recruit effectively. However, if reim-
bursement is used to help recruitment it is important to link this directly
to recruitment targets. Funds should be withdrawn if targets are not met.

15.6 Evidence-based recruitment

A recent systematic review of recruitment methods (Watson and Torgerson,
2006) found fourteen papers describing twenty different interventions.
In the following we summarise the main findings.

One trial of a patient preference design found no difference between
that design and a normal recruitment approach (Cooper et al., 1997).
As mentioned previously, two trials comparing placebos versus no place-
bos looked at recruitment rates. They found that recruitment was signif-
icantly greater among potential participants randomised to receive
information about the ‘open’ version of the trial as compared with the
placebo version. A trial undertaken in France randomised different centres
to receive regular visits from the trial co-ordinator or simply have patient
recruitment materials posted to the participating centres (Liénard et al.,
2006). The trial did not detect a difference between the resource-intensive
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approach (i.e., trial co-ordinator visiting at regular intervals) versus the
minimalist method. This trial was unable to show that ‘accepted practice’
in trial management of close support from the trial co-ordinators was
more effective. Clearly, trial management methods need to be as rigorously
evaluated as the treatments themselves. Two trials compared recruitment
of participants using nurses compared with using doctors. Both trials
found that doctors had slightly, but non-statistically significantly, greater
recruitment than nurses and one of the trials found that nurses took
longer and therefore recruitment was not significantly less expensive
(Donovan et al., 2003; Aaronson et al., 1996). A cluster trial of training
GPs and practice staff in the management of back pain led to significant
increases in recruitment among the trained staff (i.e., more than double)
(Farrin et al., 2005). Therefore, a training package for recruiting clinicians
might be helpful.

An American trial looked at the use of Hispanic nurses to recruit Hispanic
women in the Women'’s Health Initiative study of HRT: this was found
to be helpful (Larkey et al., 2002). In contrast, African-American researchers
were not more successful compared with non-African-American researchers
in recruiting African-American men into a cancer screening trial,
although the same study noted church-based methods did improve
recruitment among African-Americans compared with non-church-based
methods (Ford et al., 2004).

A study that used qualitative research methods of boosting trial recruit-
ment claimed to show that recruitment rose after the introduction of
enhanced recruitment methods that had been developed using qualitative
research methods (Donovan et al.,, 2002). However, the quantitative
evaluation was a simple before and after method and the before recruit-
ment period was at the start of the trial, when recruitment is generally
often low; therefore, this approach remains unproven.

Zelen's method is advocated as an approach to maximising recruit-
ment: there is no randomised evidence to support this assertion as yet.
However, some trials have used a mixture of Zelen’s method and the
normal consent method and have shown that recruitment is enhanced
using Zelen’s approach. For example, a trial by Andrew et al. showed
that recruitment was better in the centre that used Zelen’s method com-
pared with the other centres (Andrew et al., 1993).

15.7 Discussion

Recruitment to clinical trials is extremely difficult. The challenges to
recruitment must not be underestimated. Most trials probably do not
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recruit on time or reach their original target. Trial recruitment needs to
be a key item for detailed discussion by the trial management team before
recruitment starts. Prompt recruitment must be one of the key objec-
tives for any trial, otherwise they will be underpowered and we may
miss important effects. Little rigorous research has been undertaken to
examine the most effective recruitment strategies. Many recruitment
approaches are based on ‘custom and practice’ or expert opinion or best
guesses. This evidence base for recruitment methods is unsatisfactory.
Some trials of recruitment strategies have been undertaken (Watson and
Torgerson, 2006) and the evidence from a review of these does encourage
the use of educational interventions and the avoidance of placebos.
However, the effectiveness of common recruitment approaches — such as
sending trial co-ordinators on site visits — remains unproven.

In summary, the key messages on recruitment are: do a pilot; use data-
base recruitment if possible; give some education to those doing the
recruitment; and think carefully before using placebos.

15.8 Key points

e Recruitment is difficult in most health care trials.

e Trials using trickle recruitment are especially prone to the problem of
poor recruitment.

e Trialists should plan for poor recruitment and take steps to avoid it.

e Effective interventions include: database recruitment; piloting recruit-
ment; not using placebos; educating clinicians.
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Systematic Reviews of Randomised
Controlled Trials

16.1 Background

The house of social science research is sadly dilapidated. It is strewn
among the scree of a hundred journals and lies about in the unsightly
rubble of a million dissertations. Even if it cannot be built into a sci-
ence, the rubble ought to be sifted and culled for whatever consist-
ency there is in it. (Glass et al., 1981)

In evidence-based public policy-making, for effectiveness questions, the
highest level of evidence is widely considered to be a systematic review
(research synthesis) of RCTs. A single RCT cannot always provide a
definitive answer about the effectiveness of an intervention in all the
circumstances where it may be applicable, i.e. in different settings or
with participants with different characteristics. A notable exception is a
single ‘mega-trial’, an example of which is the RCT of polio vaccine where
750 000 children were randomised.

A systematic review is essential as a prelude to an RCT, to assess
whether another RCT is necessary and, if so, to inform its design. If rela-
tively small and underpowered earlier RCTs are available, we should first
review them to obtain an estimate of the anticipated effect size to
inform the size of our trial. Similarly, on completion of a new trial we
should add its results to any previous randomised evidence, to obtain a
more precise overview of the relevant research. The best method
of doing this is to undertake a systematic review of RCTs (Torgerson,
2003).

160
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16.2 Systematic reviews

The science of research synthesis — as in any other scientific research —
implies that those who practice it will take steps to avoid misleading
themselves and others by ignoring biases and the effects of chance.
(Chalmers, 2003)

A systematic review employs a scientific approach to identifying and
synthesising all the RCTs in a given area. In the field of health care
research the Cochrane Collaboration was established in the early 1990s
to undertake, publish and disseminate high quality reviews of high quality
controlled studies, preferably those employing random allocation. The
world-wide success of the Cochrane Collaboration in turn led to the
establishment of its sister organisation, the Campbell Collaboration (in
2000), which aims to undertake systematic reviews of randomised trials
and quasi-experiments in the fields of education, crime and justice and
social welfare.

Although widespread interest in systematic reviews dates from
the mid-1990s, the concept has a much longer history. James Lind
(author of the scurvy experiment in the eighteenth century mentioned
earlier) gathered together all of the literature on scurvy to help
inform him about the best method for its treatment (see www.james-
lindlibrary.org).

Research synthesis can, in principle, be applied to studies of any design
(to address a range of questions); in this book we confine ourselves to its
application in the synthesis of RCTs.

A systematic review differs from a traditional ‘narrative’ review in respect
to the key principle of transparency in its methods in order to facilitate
replication. Other features of systematic reviews are important (for
example, systematic methods for searching exhaustively to locate all
potentially relevant studies, reasons for including studies established
a priori and methods for quantitative synthesis), but the defining principle
of the systematic review process is its explicit, transparent, potentially
replicable method.

In their systematic review of trials evaluating the use of human colloid
to replace fluid loss among injured patients Schierhout and Roberts
(1998) found a statistically significant increase in mortality associated
with the intervention. The review was disputed and replicated by Wilkes
and Navickis (2001), who also found an increase in mortality associated
with the intervention; however, by including a wider range of trials the
difference they found was no longer statistically significant. Eventually,
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a large trial of nearly 7,000 critically ill patients comparing the use of
human albumin with the use of saline for blood loss found little evidence
for harm, and little evidence for benefit (SAFE Study Investigators, 2004).

In the field of education research, Ehri and colleagues (2001) under-
took a systematic review of studies in the field of phonics instruction
and concluded that systematic phonics instruction was more effective
compared with non-systematic or no phonics instruction (pooled effect
size of 0.41). A replication and update of this review supported the findings
of the original review, but the overall effect size was substantially reduced
to 0.27 (Torgerson et al., 2006).

In theory, a rigorously designed and conducted systematic review should
minimise reviewer bias by making all the methods of the study explicit,
for example decisions to include or exclude studies. However, even rig-
orously conducted systematic reviews can be susceptible to publication
or design bias.

16.3 Publication bias

Any literature review may be susceptible to publication bias, where rele-
vant studies are not included in the review because they have not been
published. A number of steps can be used in the systematic review process
to limit the potential for publication bias. Firstly, the systematic review
search should be exhaustive. Secondly, published and unpublished litera-
ture should be included in the review. Randomised trials with positive
intervention effects tend to be published more easily and rapidly than
those showing a negative or null effect. Therefore limiting a systematic
review to only published studies will tend to bias the combined effect size.

Studies of the prevalence of publication bias go back to the 1950s and
1960s. For an overview of the history of publication bias, see Torgerson
(2006). For example, Smart (1964) noted that in the area of psychology
unpublished studies were more likely to have negative results compared
with published papers. He concluded that the neglect of negative stud-
ies was due to non-submission by authors or to greater critical examina-
tion of experiments containing negative results by journal editors and
peer reviewers. These findings were confirmed in health care research by
Dickersin (2002) and in psychological, educational and behavioural
treatment research by Lipsey and Wilson (1993).

Sutton et al. (2000) and Egger et al. (1997) demonstrated that many
meta-analyses in health care research did not consider the effect of pub-
lication bias on their results. For example, Sutton et al. (2000) analysed
forty-eight systematic reviews; they estimated that twenty-three of these
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had some degree of publication bias. They then extrapolated from this
to estimate that about half of meta-analyses may be subject to some level
of publication bias and about a fifth will have a strong indication of
missing trials.

Even when it is possible to access all of the publications there is a
potential problem with time-lag bias (Hopewell et al., 2007). This occurs
when positive trials are written up more quickly and accepted more rapidly
by journals. Consequently a systematic review that includes very recent
literature may bias the review towards a positive conclusion, as negative
studies may still be going through the publication process.

Positive trials may be published in more prestigious, more easily
accessed journals, and negative trials may be more likely to be published
in more obscure outlets. For example, two trials that appeared to show
that the use of hip protectors had a positive effect on the prevention of
hip fractures were published in the leading medical journals (Lauritzen
et al., 1993; Kannus et al., 2000). When two, larger, more rigorous trials
that showed no benefit of hip protectors were undertaken, they were
both published in lower impact journals (Birks et al., 2004; O’Hallaron
et al., 2004).

16.4 Design bias

In addition to the potential problem of publication bias, a systematic
review can produce biased findings if the primary studies included within
the systematic review are, themselves, likely to be biased because they
are of weak methodological quality. Collating several biased trials in a
systematic review will produce a precise, but biased, result. Therefore, we
need to assess the quality of the RCTs that we include in the review in
order to limit the impact of design bias.

The quality of randomised controlled trials is variable, and poor qual-
ity trials may give misleading results. Clearly, inferences about the effect-
iveness of an intervention will be more reliable if they are drawn from
good quality trials. Reviews in the health care literature have high-
lighted the methodological weaknesses of RCTs published in major med-
ical journals (Pocock et al., 1987; Altman and Doré, 1990; Gore et al.,
1992; Moher et al., 1994; Assman et al., 2000; Schulz and Grimes, 2002).
Failure to conceal the randomisation process overestimates treatment
effects compared with trials that use adequate concealment (Schulz and
Grimes, 2002; Schulz et al., 1995; Egger et al., 2003; Hewitt et al., 2006).
On the other hand, failure to report the randomisation process is not
always an indicator that a rigorous approach was not used. For example,
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in a trial of bone density screening concealed allocation was undertaken
(Torgerson et al., 1997). This was not reported in the published paper
because, at that time, the problem of allocation subversion was not
widely understood.

In educational research, it is sometimes difficult to know whether or not
a controlled trial has been randomised. None of the published reports of
two widely cited controlled trials comparing different approaches to
phonics instruction (Johnston and Watson, 2004) describes methods of
allocation. Correspondence with the lead author established that the
allocation procedure for the first of the two experiments was researcher
decision, while in the second experiment matching was followed by ran-
dom allocation (Johnston, personal communication, 2005); thus the two
trials were respectively non-randomised and randomised.

16.5 The CONSORT statement and trial quality

In an effort to improve the reporting of randomised trials in health care
research many medical journals have adopted the CONSORT statement
(Begg et al., 1996). A before and after evaluation of these guidelines
appeared to show an improvement in the reporting of randomised studies
(Moher et al., 2001). However, an evaluation of a larger number of ran-
domised trials over a longer time frame indicated that the quality of trial
reporting, in prestigious medical journals, was improving before the
CONSORT guidelines were published and continued to improve at a
similar rate after their adoption (Torgerson et al., 2005).

Evaluations comparing the effect sizes of ‘good’ quality trials compared
with ‘poor’ quality trials demonstrate differences in effect (Kjaergaard et al.,
2001). Indeed, the difference in effect sizes between small and large tri-
als, so often explained by publication bias, was probably due to the fact
that small trials tend to be of poorer quality. When compared with good
quality large trials, good quality small trials yield similar estimates of
effect.

Quality assurance scales to measure the quality of trials can give very
different results depending on the items included and the weights given
to individual items. If quality criteria use a system of ‘weighting’ or
‘adding up’ there is a risk of classifying a trial as being of ‘good’ quality
simply because it performs well on many of the criteria. However, if the
trial has a fatal flaw in one of the most important aspects of trial design,
the results of the trial may be unreliable. On some scales studies can score
highly if they are well reported rather than well conducted (Juni et al.,
2001).
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16.6 CONSORT, CLEAR NPT checklists

The CONSORT guidance is now widely accepted by medical journals and
some psychological journals.

Table 16.1 gives the CONSORT checklist, modified to apply more widely
than was originally intended (Torgerson, 2003), in this case to educational
trials, but it could also be adapted for the reporting of trials in crime and
justice, social welfare and other areas of public policy.

Some of the CONSORT researchers (Boutron et al., 2005) subsequently
developed the CLEAR NPT checklist for non-pharmacological trials,
which is a shortened version of CONSORT and focuses mainly on
the aspects of trial quality that affect the internal validity of the
study. This checklist can be applied to non-health care trials as well (see
Table 16.2).

An important aspect of trial reporting is the use of the CONSORT flow
diagram. In Figure 16.1 a diagram taken from an RCT of the use of ICT
in the teaching of spelling is shown (Brooks et al., 2006).

The diagram includes the flow of participants through the trial. After
allocation, four of the pupils left the school and could not be included in
the pre-test. Some participants were not available for the post-test.
Sensitivity analysis in the paper using post-test values only did not materi-
ally alter the findings of this study (Brooks et al., 2006).

Table 16.1: Modified CONSORT quality criteria

Was the study population adequately described? (i.e., were the important
characteristics of the participants described, e.g. age, gender, learner
characteristics?)

Was the minimum important difference described? (i.e., was the smallest
educationally important effect size described?)

Was the target sample size adequately determined?

Was intention to treat analysis (intention to teach analysis) used?

Was the unit of randomisation described (i.e., individuals or groups, e.g. classes,
schools)?

Were the participants allocated using random number tables, coin flip,
computer generation?

Was the randomisation process concealed from those who were involved in
recruitment?

Were follow-up measures administered blind?

Was estimated effect on primary and secondary outcome measures stated?

Was precision of effect size estimated (confidence intervals)?

Were summary data presented in sufficient detail to permit alternative analyses
or replication?

Was the discussion of the study findings consistent with the data?
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Table 16.2: CLEAR NPT - checklist for non-pharmacological trials

Item

Possible answer

1 Was the generation of allocation
sequences adequate?

2 Was the intervention allocation
concealed?

3 Were details of the intervention
administered to each group (e.g.
class, school) made available?

4 Were intervention providers’

(e.g. teacher, instructor) experience
or skill in each arm appropriate?

5 Was participant adherence addressed
quantitatively?

6 Were participants adequately blinded?

6.1 1If participants were not adequately
blinded

6.1.1 Were all other interventions and
cointerventions the same in each
randomised group?

6.1.2 Were withdrawals and lost to follow-up
the same in each randomised group?

7 Were intervention providers
adequately blinded?

7.1 If intervention providers were
not adequately blinded

7.1.1 Were all other interventions and
cointerventions the same in each
randomised group?

7.1.2 Were withdrawals and lost to follow-up
the same in each randomised group?

8 Were outcome assessors adequately
blinded to assess the primary outcomes?

8.1 If outcome assessors were not adequately
blinded, were specific methods used to
avoid ascertainment bias?

9 Was the follow-up schedule the same
in each group?

10  Were the main outcomes analysed
according to the intention-to-treat
(intention to teach) principle?

Yes; No; Unclear
Yes; No; Unclear

Yes; No; Unclear

Yes; No; Unclear

Yes; No; Unclear
Yes; No, because blinding is

not feasible; No, although
blinding is feasible; Unclear

Yes; No; Unclear

Yes; No; Unclear
Yes; No, because blinding was

not feasible; No, although
blinding was feasible; Unclear

Yes; No; Unclear

Yes; No; Unclear

Yes; No because blinding was
not feasible; No, although
blinding was feasible; Unclear
Yes; No; Unclear

Yes; No; Unclear

Yes; No; Unclear

(Source: Boutron et al., 2005). NB — wording slightly changed (e.g., treatment to
intervention, patient to participant) to make it more applicable to all trials.
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Year 7 Pupils
N =155
Randomised
| ~ 1
ICT group No ICT Group
N=77 N=78
N = 3 left school N =1 left school
J J
70 valid pre-tests 75 valid pre-tests
67 valid post-tests 71 valid post-tests
63 valid pre- and post-tests 67 valid pre- and post-tests
J J

Figure 16.1: CONSORT flow diagram
Source: Brooks et al., 2006.

16.7 Trial quality

Compared with the field of health care research less methodological work
on the quality of non-health care trials has been undertaken (Pocock
et al.,, 1987; Altman and Doré, 1990; Gore et al., 1992; Moher et al.,
1994; Assman et al., 2000). The quality of some health care RCTs is low,
although, as noted above, in some cases this may be due to poor quality of
reporting; however, much is due to low quality design and conduct.

In a comparison of the quality of RCTs between health care and edu-
cation, in the sample of 84 education trials from a twelve-year period
between 1990 and 2002 (Torgerson et al., 2005), no trial reported
whether or not the randomisation process was concealed, and no trial
reported the justification for sample size calculation. Only one trial
reported the use of confidence intervals and only twelve (14 per cent) used
blinded assessment of outcome. The same study did, however, note that
the majority of health care trials — especially those published in relatively
low impact journals — also had significant quality problems.

16.8 Meta-analysis

The main aim of a systematic review is to systematically locate either all
the available evidence on a given subject or a representative sample of the
evidence, which may then be combined in a synthesis, such as a meta-
analysis, in order to give a precise overview of the existing literature within
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Standardised mean difference
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Torgesen 99 B = 0.07 (—0.34, 0.48) 17.3
Torgesen 01 _.__g —0.31(—0.87,0.24) 9.5
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Haskell —— 0.07 (—0.73, 0.87) 4.6
Johnston - 0.97 (0.43, 1.51) 10.1
Leach —-— 0.84 (—0.08, 1.75) 3.5
Skailand —— —0.17 (—0.78, 0.44) 8.0
Subtotal <:‘:> 0.45(0.11, 0.78) 26.1

i
Overall < 0.27 (0.10, 0.45) 100.0

T T
—3.7709 0 3.77098
Standardised mean difference
Favours Control Favours Phonics

Figure 16.2: Meta-analysis and Forest plot of systematic phonics teaching on
reading skills
Source: Torgerson et al., 2006.

an area. A meta-analysis is a statistical method of combining similar
studies to obtain a more precise estimate of effect, which is particularly
valuable in areas that contain small, underpowered RCTs.

Glass (1976) and Glass et al. (1981) first proposed the term ‘meta-
analysis’ to describe the method for aggregating the data from individual
studies. The results from individual studies with similar conceptual
underpinnings but with different measurement scales for outcomes are
expressed in a standard metric: an effect size, which is the estimate of the
size of a treatment effect. The effect size is usually the difference between
the means of the experimental and control groups at post-test divided
by the standard deviation of the control group (Glass, 1976). When the
effect sizes are pooled into an aggregate effect size the individual studies
are weighted by their sample sizes. In addition, subgroup analyses can
be undertaken to explore the effect of moderator variables on the effect.
Meta-analysis is also limited by the quality of its included studies.

In Figure 16.2 we show an example of a systematic review of RCTs
evaluating systematic versus unsystematic or no phonics instruction, its
meta-analysis and Forest plot (Torgerson et al., 2006). The results of the
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review are presented graphically and we can see the individual point
estimates, depicted as a square with the 95 per cent confidence intervals.

The aggregate of all the twelve relatively small trials is a small effect size
of 0.27, which is statistically significant (95 per cent confidence interval
0.10 to 0.45). Note that one, small trial is an obvious outlier with a positive
effect size much greater than any other study in the meta-analysis. If we
remove this small study, then the re-calculated effect size of the meta-
analysis is no longer statistically significant.

When a number of trials have been undertaken in a given area we can
undertake a ‘meta-regression’. This is a statistical analysis where we use
study level variables to explain differences in effect. In Figure 16.2 the
effect of phonics instruction seems to be consistent among children with
different learner characteristics (children with learning difficulties or nor-
mally attaining children).

16.9 Quality of systematic reviews

Because the robustness of the findings of systematic reviews is under-
pinned by the quality of their design, conduct and reporting, it is import-
ant that these should be rigorous. Important quality issues include, for
example, whether or not the reviewers examined the effect sizes by method
of allocation (random or other method); the degree to which bias was
limited in the review; whether the searching was exhaustive (including a
search of ‘fugitive’ or ‘grey’ literature in order to limit the possibility of pub-
lication bias) and transparent; and whether the variability in the quality of
included trials was assessed and taken into consideration in the synthesis.

The importance of the quality appraisal of systematic reviews was
recognised in the field of health care research in the QUOROM (Quality
of Reporting of Meta-analyses) statement (Moher et al., 1999; Shea et al.,
2001). Like the CONSORT statement (Altman, 1996) for the reporting of
RCTs, the QUOROM statement was developed by methodologists as a
consensus statement for the quality of reporting of meta-analyses in
health care research. It is believed that the quality of reporting of meta-
analyses is a reasonably good (though not perfect) indicator of the quality
of the review (Shea et al., 2001). The stages of a meta-analysis in which the
QUOROM standards should be adopted are: the rationale for the meta-
analysis; the methods and results for the search; the inclusion/exclusion
criteria; the coding of the primary studies; the meta-analysis; quality assur-
ance procedures; and the interpretation of the results.

Other quality appraisal checklists are available, particularly in the area
of health care research. For example, a systematic review on the reporting
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of RCTs in health care research found thirty-four checklists (Shea et al.,
2001). More recently, the Campbell Collaboration has developed guide-
lines for the writing of protocols for systematic reviews in the fields of
education, criminal justice and other social sciences; and in the UK the
EPPI Centre has developed similar guidelines specifically in the field of
education. The QUOROM checklist (Table 16.3) is specifically designed for
the quality appraisal of reporting of meta-analyses of experimental research
and has been modified for educational meta-analyses using education-
ally appropriate terminology to describe participants and interventions.

As well as the QUOROM guidelines for reporting systematic reviews
guidance has also been developed for the quality appraisal of systematic
reviews (Shea et al., 2007). In health care research it has been estimated
that there are at least twenty-four instruments for the assessment of the
quality of systematic reviews (Shea et al., 2001). A tool that attempts to
bring together widely agreed criteria for the quality of systematic
reviews is the AMSTAR measurement tool (Shea et al., 2004), which con-
tains eleven items to assess the quality of systematic reviews (Table 16.4).

Table 16.3: Key features of the QUOROM statement (adapted for systematic
reviews in research in the wider social sciences)

Introduction: Explicitly state problem and rationale for review.

Methods: searching: State sources of information (e.g., names of databases, hand
searching of key journals), search restrictions (e.g., year, publication language,
published and/or unpublished).

Selection: Inclusion and exclusion criteria.

Validity assessment: Quality assessment (e.g., blinded follow-up).

Data abstraction: Process used (e.g., double data extraction).

Study characteristics: Type of study design, student characteristics, details of
intervention, outcomes, how was educational heterogeneity assessed?

Data synthesis: How were data combined? Measures of effect, statistical testing
and confidence intervals, handling of missing data, sensitivity and subgroup
analyses, assessment of publication bias.

Results: trial flow: Provide a profile of trials identified and reasons for
inclusion/exclusion.

Study characteristics: Provide descriptive data for each trial (e.g., age, setting, class
size, intervention).

Quantitative data synthesis: Report agreement between reviewers on selection and
validity assessment, present summary results, report data needed to calculate
effect sizes and confidence intervals (i.e., number, mean, standard deviations
by group).

Discussion: Summarise key findings and educational inferences. Interpret results
in light of all the evidence, acknowledge potential biases in review and suggest
areas for future research.

Source: adapted from Shea et al. (2001).



Table 16.4: AMSTAR quality appraisal tool for systematic reviews

1. Was an ‘a priori’ design provided?
The research question and inclusion criteria should be established before the conduct of the review

2. Was there duplicate study selection and data extraction?
There should be at least two independent data extractors and a consensus procedure for
disagreements should be in place.

3. Was a comprehensive literature search preformed?
At least two electronic sources should be searched. The report must include years and databases used.

Key words and/or MESH terms must be stated and where feasible the search strategy should be provided.

All searches should be supplemented by consulting current contents, reviews, textbooks, specialised
registers, or experts in the particular field of study, and by reviewing the references in the studies found.

4. Was the status of the publication (i.e., grey literature) used as an inclusion criterion?
The authors should state that they searched for reports regardless of their publication type.

The authors should state whether or not they excluded any reports (from the systematic review)
based on the publication status, language etc.

5. Was a list of studies (included and excluded) provided?
A list of included and excluded studies should be provided.

6. Were the characteristics of the included studies provided?

In an aggregated form such as a table, data from the original studies should be provided on the
participants, interventions and outcomes. The range of characteristics in all the studies analysed, e.g.,
age, race, sex, relevant socio-economic data, should be reported.

Yes

No

Can’t answer
Not applicable

Yes

No

Can’t answer
Not applicable

Yes

No

Can’t answer
Not applicable

Yes

No

Can’t answer
Not applicable

Yes

No

Can’t answer
Not applicable

Yes

No

Can’t answer
Not applicable

(Continued)
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Table 16.4: (Continued)

7. Was the scientific quality of the included studies assessed and documented?

‘A priori’ methods of assessment should be provided (e.g., for effectiveness studies if the author(s) chose
to include only randomised, double-blind, placebo controlled studies, or allocation concealment as
inclusion criteria); for other types of studies alternative items will be relevant.

8. Was the scientific quality of the included studies used appropriately in formulating conclusions?
The results of the methodological rigour and scientific quality should be considered in the analysis and the
conclusions of the review, and explicitly stated in formulating recommendations.

9. Were the methods used to combine the findings of the studies appropriate?

For the pooled results, a test should be done to ensure the studies were combinable, to assess their
homogeneity (i.e., Chi-squared test for homogeneity, 1?). If heterogeneity exists a random effects
model should be used and/or the clinical appropriateness of combining should be taken into
consideration (i.e., is it sensible to combine?)

10. Was the likelihood of publication bias assessed?
An assessment of publication bias should include a combination of graphical aids (e.g., funnel plot,
other available tests) and or statistical tests (e.g., Egger regression test).

11. Was the conflict of interest stated?
Potential sources of support should be clearly acknowledged in both the systematic review and
the included studies.

Yes

No

Can’t answer
Not applicable

Yes

No

Can’t answer
Not applicable

Yes

No

Can’t answer
Not applicable

Yes

No

Can’t answer
Not applicable
Yes

No

Can’t answer
Not applicable

Source: Shea et al., 2007.
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16.10 Using systematic reviews to develop an RCT

As noted previously, a systematic review is an invaluable tool for informing
the design of an RCT. For instance, if we want to undertake the ‘definitive’
trial of systematic phonics teaching versus other forms of reading
instruction we could use the results of a systematic review to inform the
calculation of the required sample size. From Figure 16.2 we can see that
the systematic review of RCTs suggested an effect size of 0.27 favouring
systematic phonics teaching over other phonics approaches. As a mini-
mum we ought to make our trial sufficiently large to detect at least a
0.27 difference in effect size. To detect this difference with 80 per cent
power and using individual randomisation (see Chapter 13) we would
need about 440 children in the trial. Such a trial would be much larger
than any of those that were included in the meta-analysis: the largest
trial only included 121 children. Note, however, the difference of 0.27
may be exaggerated through the possibility of publication bias or because
a small trial with an extreme result was included. Therefore, to be con-
servative we would probably want to detect 0.25 or 0.20 of an effect size.
An effect size of 0.20 would require about 800 participants for an indi-
vidually randomised trial: a cluster randomised trial would require sev-
eral times more participants.

From Figure 16.2 we can see that the meta-analysis of trials has been
divided into two groups: children experiencing learning difficulties and
normally attaining children. The effect size of phonics instruction among
children experiencing difficulties is 0.21 whereas the effect size among nor-
mally attaining children is 0.45: there is insufficient evidence to focus our
study on children with learning difficulties. Therefore, we should probably
include children with all learner characteristics.

A single summary graph of our systematic review has informed us about
the potential size of the trial and the kind of participants we should
include. Without having undertaken the review we might have either
underpowered our trial or selected too narrow a range of participants. The
review might also help in the selection of outcome measures. For example,
we might avoid tests that appear to have poor performance characteristics,
or we might decide to include a test that was widely used in previous
research in order to enhance the credibility of our findings.

16.11 Discussion

A systematic review of good quality RCTs is the highest level of evidence
in effectiveness research. An individual RCT may, by chance or through
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weak design, produce a biased result. Combining trials in an overview —
even if the trials cannot be formally synthesised in a meta-analysis — is
usually more informative than relying on the results of a single trial. The
exception to this may be if there is a large, definitive study that overrides
the evidence from a series of small trials. The definitive trial of human
albumin was probably more robust in its conclusions than the preceding
systematic reviews that included a more heterogeneous sample of studies.

16.12 Key points

e Systematic reviews of high quality RCTs are the best method of inform-
ing effectiveness questions.

e The statistical summary of different trials (meta-analysis) improves
precision.

e Graphical displays of trials help inform future RCT design as well as
policy.

e All reviews are susceptible to publication and design biases; systematic
reviews are less susceptible, due to exhaustive searching, and quality
appraisal of included trials.

e New trials contribute to updated systematic reviews.
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Economic Evaluation Alongside
Randomised Trials

17.1 Background

Economic evaluation is of key importance in rational decision-making.
Most interventions have a cost, and some effective interventions are sim-
ply too expensive to be implemented. Unless economic evaluations are
included alongside randomised trials we run the risk of introducing effect-
ive, but cost-ineffective interventions. In this chapter we discuss some of
the basic concepts and issues surrounding the use of economic evaluations
in trial settings. Economic evaluation is a complex discipline and we do
not attempt to do full justice to it here. There are numerous textbooks
solely concerned with economics and economic evaluation. In this book
we cover some of the key issues and introduce some key concepts which
are important to bear in mind when planning an economic aspect to a
trial. Ideally, however, one should include an economist in the trial team.

17.2 Establishing the need for an RCT

One role that economics can fulfil is to ascertain whether or not it is
worthwhile to undertake a given RCT. Any research has an opportunity
cost. If we fund a trial to evaluate the use of a treatment for heart failure
this means we cannot use the resources to fund a trial evaluating novel
therapies for breast cancer treatment. It is argued that economic tech-
niques can be used to help with the prioritisation of research (Fleurence
and Torgerson, 2004). There are a number of approaches that can be used
to help research prioritisation. One method is to establish the burden of
the problem and its costs to society. In health care we would try to count
the lives or Quality Adjusted Life Years (QALYs) lost and the costs of a list
of diseases. In its most naive form research is directed to those areas that
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have the greatest burden and/or cost. The problem with this approach is
that it takes no account of whether a disease is amenable to treatment by
current or incipient technologies. Many illnesses, whilst prevalent, may
not be curable — whatever treatment is used. Furthermore, this approach
does not take into account the cost of any potential treatments or their
likely impact. Consequently if we depend upon this method we may not
invest in researching an intervention that is relatively inexpensive but
deals with a less common disease. Also this approach takes no account
of the cost of the research. A single trial dealing with a prevalent disease
might cost £20 million but doing this study could displace twenty
smaller studies addressing twenty other disease areas. Whilst the single,
large, expensive study may be worthwhile, more sophisticated analyses
than merely looking at total disease burden are required to assess
whether the opportunity lost or cost is worthwhile.

Another approach to identifying research priorities is to undertake
prior modelling exercises of different treatments and then select those
that are likely to be most cost effective. For example, in the mid-1990s
there was discussion about which treatments should be evaluated for the
prevention of fractures in older people. In a simple modelling exercise it
was shown that, given assumptions of effectiveness derived from obser-
vational data, vitamin D appeared to be a good buy in terms of further
evaluation (Torgerson et al., 1996). However, there was more robust evi-
dence for the effectiveness of calcium. Therefore, a sensible approach was
to use a factorial design evaluating both calcium and vitamin D together
or independently: this trial design was put forward to the MRC and funded
(RECORD Trial Group, 2005).

In the example above of research prioritisation, choices were only made
between several treatments within the same disease area. The question
of whether any evaluation within that disease area was worthwhile com-
pared to, say, cardiac care was not established.

Using economics to prioritise research efforts is rarely undertaken;
however, given constrained research budgets it probably should be done
more often. Economic modelling techniques try to combine all the likely
costs and benefits of undertaking a research programme in order to make
research prioritisation more rational. Such modelling techniques can also
be used to inform aspects of the trial design, such as sample size and the
appropriate treatment comparator.

One role for pilot trials might be to help inform whether or not it is
cost effective to undertake the definitive trial. Usually a pilot trial is
undertaken simply to check assumptions of recruitment, adherence and
other practicalities of undertaking a trial. However, a pilot could also
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produce some fairly robust cost data that could then be used to assess
whether it is actually worthwhile investing a large amount of scarce
resources in doing the definitive evaluation.

As well as helping to establish the need for a trial, economic tech-
niques can also be used to help choose the most efficient trial design. For
instance, as noted previously, simple economic techniques can be used
to establish the most efficient allocation ratio. Prior economic evalu-
ation can also determine the likely size of a trial: a trial can be powered
to detect an effect size that is too small to be cost-effective; consequently
we might choose a smaller trial to detect a larger size as we are uninter-
ested in small differences because they will not be cost effective.

17.3 Economic evaluations alongside an RCT

The RCT is often the best vehicle for providing unbiased estimates of
both effects and costs. Whilst it is generally true that an RCT is the best
method to provide unbiased estimates of costs this may not always be
the case. Sometimes, due to the design of the RCT, the costs profile of
participants or the costs of the trial intervention may not reflect actual
practice when the intervention is implemented. For instance, the cost of
an intervention may be relatively high when being used in an RCT, but
fall when economies of scale reduce the costs when implemented.
Therefore, it is important to bear in mind that RCT data may need to be
supplemented by data generated from other means. It is important, how-
ever, to choose an RCT design that is optimum to inform decision-making
about the best treatment option. As noted in previous chapters, trials
can be explanatory or pragmatic. Pragmatic trials are the best design for
an economic evaluation as this design more closely resembles routine
clinical practice and it is this we wish to cost and evaluate.

17.4 Perspective of the evaluation

It is important for any economic evaluation to specify the perspective.
Ideally the widest perspective — the societal perspective — should be
adopted. The societal perspective measures all the costs and benefits of any
intervention. If, for instance, an intervention increases or decreases
employment then this cost and benefit should be measured and included
in the analysis even if the intervention does not directly aim to change
this. Many economic evaluations, however, use a narrower perspective —
usually the perspective of the organisation that pays for the intervention.
For instance, a health care treatment will result in an increase in health
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care costs to deliver the intervention but may also reduce downstream
costs, such as admissions to hospital or consultations by a primary care
physician. There are likely to be other costs. A patient may have to take
time off work (which includes unpaid work) to attend a doctor’s
appointment — this cost ought be measured and included, but often it is
not. The disadvantage of not adopting a wide perspective is that there is
an incentive to ‘cost-shift’ from one sector of society to another. For
example, if we want to evaluate a policy of caring for people in the com-
munity who previously resided in an institution then adopting a narrow
perspective could be misleading. Such a policy change would reduce costs
in the health sector but increase costs to the families caring for the per-
son, as well as other costs such as social welfare. Adopting a health care
perspective could lead to the adoption of a policy that increases overall
costs to society and reduces utility because, within the health care sector,
the costs are lowered and the utility is increased. But, in the non-health
care sector, costs are increased and there may be a reduced utility among
carers and so the overall effect may lead to societal inefficiencies.

Nevertheless, many evaluations do adopt a narrow perspective — for
instance the UK’s National Institute for Clinical Effectiveness (NICE),
which uses health economics to inform its decisions, only uses a health
care perspective. This tends to increase the cost effectiveness of inter-
ventions that mainly impact on the health sector relative to treatments
that impact on the non-health sector. Economists often use a narrow
perspective because it can be quite time consuming and difficult to iden-
tify and value the multitude of costs and effects involved. Given limited
researcher resources, identification of what is perceived a priori as the
main costs may be the most efficient use of researcher resources. Often
some of the wider impacts of an intervention may have little impact on
the wider evaluation. The main drivers tend to be the cost of delivering
the intervention and the immediate benefits. The additional costs and
benefits may add little to the conclusions. Obviously without measuring
these we cannot always be sure that this is the case.

17.5 Cost ascertainment

Costs comprise resource quantity weighted by price. It is important to
gather and report actual resource quantities used, for example, number of
GP visits, class size and grade and experience of staff. This is because prices
change, not least with inflation, and the results of the evaluation may be
different with different prices. If we know the quantity of resources we
can look at the results with different prices (i.e., a sensitivity analysis).
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There are several sources of cost data in health care evaluations: the
participant, routine records, hospital purchases etc. Generally the par-
ticipant is the easiest source of cost data as collecting cost data from par-
ticipant questionnaires is relatively easy. The relevant cost questions can
be added to participant questionnaires. Economists, however, often col-
lect large amounts of detailed data, such as the length of a visit, its type
as well as how many visits take place. This data collection can be oner-
ous for the participant and jeopardise the response rates to the trial as a
whole or there can be large amounts of missing data. Consequently it is
best to try to obtain the key data, such as the number of visits, and make
some assumptions about their length. It is better to have some data,
which are relatively accurate, than no data or worse, inaccurate data. It
is not necessarily the case that routinely collected data from medical
records, for example, are more accurate than self-reported data. Some
medical treatments, such as drugs that trigger a prescription, are accurate;
however, other events are not. For example, analysis of routine medical
records suggests that some individuals suffer dozens of hip fractures
when it is unlikely for them to ever have more than two fractures. This is
because a single event is often re-recorded as a new event. For instance a
patient who has had a hip fracture may consult for pain relief and this may
then be coded on the computer, erroneously, as a new hip fracture.

17.6 Measurement of non-monetary outcomes

Ideally we would like to measure both the inputs and outputs of a novel
programme in money. As noted previously, this is sometimes possible
but often it is not. Physical or mental incapacity can sometimes be trans-
lated into monetary values by looking at average compensation payments
that courts award for similar problems caused by industrial accidents,
for example. The increased benefit of education can sometimes be meas-
ured in terms of lifetime increases in income identified from longitudinal
or cohort studies that have followed up groups of people with different
educational qualifications and examined average salary differences. This
latter approach, however, will tend to inflate the value of improved edu-
cation as some of the value of a better education is signalling to the mar-
ket that the person is a relatively scarce resource. If an intervention leads
to an across-the-board increase in educational attainment then the value
of that education in terms of compensation from the employment mar-
ket will tend to be less.

When it is simply not possible to measure output in monetary terms we
can state the quantity of the output in terms of the natural units. We can
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look at the number of lives saved, cancers averted or the numbers of
children passing a certain threshold test. The problem with this approach
is that it is difficult to generalise between different interventions. If we
have one treatment that reduces hip fractures by 20 per cent and another
treatment that reduces breast cancer recurrence by 10 per cent which
should we choose, given similar costs? Or if we have to choose between
investing in an intervention that boosts average literacy levels by 10 per
cent or one that improves numeracy levels by a similar amount, which
one should we choose?

One way around this problem is to convert the outcomes into a com-
mon measure of utility (or well-being). In health care this is commonly
done by converting improvements in health into Quality Adjusted Life
Years (QALYs). A QALY is where we measure the length of life and weight it
by its quality. Consequently a year of life that is 70 per cent of perfect
health is 0.7 of a QALY. Typically people are given several health care scen-
arios and asked to give these a weighting: is living with painful arthritis
requiring a walking aid 70 per cent or 80 per cent of full health? Using a
sample of people we can calculate an average value for different health
states. Similarly, we can ask people to rate a utility scenario for an educa-
tional intervention. For example, Fletcher et al. (1990) gave educational
policy-makers different scenarios regarding mathematics achievement.
They were asked to rate these different outcomes on a rating scale to give a
utility of improved mathematics outcomes. In principle such an approach
could be applied across different educational outcomes allowing econo-
mists to undertake a cost utility analysis between different educational
interventions as is done routinely for health care evaluations.

17.7 Analysing costs and benefits

A key issue when considering both costs and benefits concerns those
which occur at the margin. When we are changing to a new programme
or a new intervention we may be gaining some additional costs with some
additional benefit. It is the additional or incremental costs and benefits
that are important, not the total costs and benefits. A common analytical
mistake when undertaking an economic evaluation is to measure the
total costs and the total benefits and calculate an average cost effectiveness
or cost benefit ratio. This approach is incorrect and misleading (Torgerson
and Spencer, 1996). Let us suppose that an existing intervention costs
$100 and our new, alternative, intervention costs $150. The incremental
cost of this is $50. The existing intervention leads to a benefit of 10 units.
The cost per unit achieved for the existing intervention is calculated by
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simply dividing the cost by the number of units, which in this case results
in a cost effectiveness ratio of $10 per unit. Now our RCT has shown that
the new treatment improves outcome by 12 units in the intervention
group compared with 10 units in the control group at a cost of $150 versus
a cost of $100. Commonly the average cost effectiveness ratio is calcu-
lated by dividing $150 by 12, which in turn results in a cost per unit of
$12.50. This appears to be a relatively small increase in cost per unit out-
come. However, the outcome of interest is the incremental cost effect-
iveness ratio, which is estimated by dividing the extra $50 cost of the
novel intervention by the extra 2 units of output. Consequently the
incremental cost effectiveness ratio is $25 per unit, not $12.5. For a pol-
icy-maker the key question should be: if I invest an extra $50 for this
programme what additional benefit do I get? We might conclude that at
$25 per unit, which is double the average cost effectiveness ratio, the
new investment is not worth it.

The incremental cost effectiveness ratio is the most common method
of informing decision-making. The problem that arises in interpreting
this ratio is the question of when something is cost effective. In some
instances the decision is very clear. If the new intervention is more
expensive and less effective than the old intervention then we are in a
situation of ‘dominance’. We do not need to undertake complex analy-
ses to conclude that we should retain the older intervention. Similarly,
if the new intervention is less expensive and more effective, we should
choose this as the new intervention is dominant. The more complex
decision arises when either the new intervention is better at increased
cost or worse at lower cost. At what cost per unit of benefit should we
decide to purchase the intervention?

In health care a cost per QALY of around £20 000 to £30 000 ($50 000)
seems to be a widely accepted threshold. In other words, society would
be willing to pay up to about £20 000 to gain one more life year for a per-
son in full health. This threshold is arbitrary, however, and is not based
upon any fundamental economic theory or paradigm as to what the cor-
rect amount is.

17.8 Sensitivity analysis

Cost ascertainment is not straightforward. As noted previously, the costs
may vary by place and time. Consequently it is always good practice to
challenge the results of the economic analysis using a sensitivity analysis.
In a sensitivity analysis we may change the prices of costs to reflect dif-
ferent settings or different expectations. If, for example, an intervention
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appears to be cost effective only if the costs are half those ascertained in
the trial, then we might recommend that further work needs to be done to
reduce the costs of the programme before it is implemented. Alternatively,
if our base analysis suggests something is cost effective, we might test
this finding by increasing the costs to see at what point the intervention
will no longer be cost effective. If we only need a small increase in costs
then we might adopt the intervention more cautiously or again recom-
mend further research to increase our certainty. On the other hand, if we
double our costs and it is still cost effective we might then consider the
intervention should be implemented without further ado.

17.9 Discounting

When an intervention has effects that extend out into time we need to
weight these future effects, both costs and outcomes, to reflect this time
difference. This is known as discounting, which reflects time preference:
society prefers benefits now rather than in the future. Consider this scen-
ario. We have two interventions: one will improve the pass rate of
16-year-old children for their national maths test this year; the other is
aimed at younger children but will also improve their pass rate in five
years’ time? Which one is preferred? Assuming equal costs and equal
numbers of children passing the exam we would prefer the programme
that is aimed at 16-year-olds rather than 11-year-olds. The next question
that arises is how much better must the programme aimed at 11-year-olds
be for us to prefer it to the one aimed at 16-year-olds — again assuming
equal costs. The difference between the groups in terms of numbers
passing the exam will form the basis of a discount rate. For example we
might demand that the intervention among 11-year-old children will
get 120 children through the standard in five years’ time compared with
investing the same resources to get 100 16-year-old children through the
standard now.

17.10 Modelling

Many trials are not long enough to capture all the long-term costs and
benefits of an intervention. Consequently economists often supplement
trial data with computer models. These enable us to assess whether, by
making assumptions of future benefits, the intervention is cost effective
in the longer term. Modelling is probably most useful for interventions
that are of doubtful cost effectiveness in the short term. If an interven-
tion is cost effective in the time frame of a typical trial then, unless we
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expect longer-term costs or harms, modelling beyond the trial will only
confirm what we already know.

17.11 Reporting results

Most economic evaluations report their results in terms of cost effective-
ness ratios. For example, the incremental cost per QALY may be reported.
Uncertainty around this estimate can be expressed as confidence inter-
vals as is normal for effectiveness outcomes. Another approach for report-
ing uncertainty is the cost effectiveness acceptability curve (CEAC). This
is a graphical technique where the cost per unit of output is plotted on
the x-axis whilst the probability of attaining a given cost per unit is plotted
in the y-axis. The point estimate of the cost effectiveness ratio is usually
the point of 50 per cent probability. Because economic evaluations have
to inform decisions that need to be made, even if it is a ‘do nothing’
option, the CEAC represents the range of willingness to pay values and
is really an indication for more research. For instance, we might observe
a cost per unit of outcome with a 51 per cent probability of $10000 or
less. In other words, there is a 49 per cent chance that the cost per unit
is greater than $10000. If we are willing to pay $10 000 we should adopt
the intervention even if the upper 95 per cent probability may be
$100 000, which is too much. Despite there being a lot of uncertainty we
still need to act, and adopting the programme is the one most likely to
be efficient. However, we still might need more research to reduce our
uncertainty.

17.12 Discussion

Economic evaluations are an important component of many pragmatic
trials. We do not just want to know whether something works; we also
want to know whether it is cost effective or not. Sometimes prior mod-
elling can tell us whether or not something is worthwhile before we do
a trial. There is little value in evaluating whether something works or
not if it is too expensive to implement even if effective. For example, the
Tennessee class size experiment, whilst effective, was too expensive to
implement widely.

Economic evaluations are not widely used outside of health care
(Levin, 2001), which is a pity as many social science programmes have
large cost implications. Interestingly the first known economic evalu-
ation alongside a randomised controlled trial was actually undertaken in
the field of education. The first known educational RCT (Walters, 1931)
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also included a basic economic evaluation. ‘If the cost of educating a
student one year be placed at $385, or $192.50 per semester, the
annual saving to the University would have been $891’ (Walters, 1931).
Unfortunately, educational researchers do not usually conduct eco-
nomic evaluations alongside their RCTs at the present time. This lack of
interest means that economic evaluation tools have not been as widely
developed as they should have been in the wider social sciences. For
example, little work has been done on the development of a utility tool
for the measurement of non-health outcomes of interventions. Such
measurement is vital to inform decision-making within a given social sci-
ence area.

17.13 Key points

¢ Economics is not just about cost.

e Economics seeks to prioritise scarce resources to maximise societal
benefit or utility.

e Economics alongside trials can help inform decision-makers with
respect to whether or not an intervention should be implemented.
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Conclusions

18.1 Background

Arguably the most significant contribution to health care research in the
last century was the development of the methodology and methods of
the randomised controlled trial. This development has led to the rejection
of harmful treatments and the more rapid adoption of beneficial thera-
pies. Other evaluative methods cannot be used to judge the effectiveness
of interventions with the same degree of certainty as the RCT.

However, other fields, such as education and crime and justice, have not
capitalised on an earlier interest in RCTs (Walters, 1931, 1932; Lindquist,
1940) and now undertake relatively few studies using an RCT design
(Oakley, 2000).

18.2 Alternatives to RCTs

Trials are often perceived as being difficult and expensive to undertake,
and non-randomised controlled studies are thought to be less expensive
or less complex alternatives. The latter argument is not convincing,
because a high quality quasi-experiment requires intensive baseline data
collection in order to enable adjustment for observable confounders.
Some potential confounders, such as age and gender, are easy to meas-
ure and correct for; with others it is more difficult. For example, in the
study by Luellen et al. (2005), which looked at the use of propensity
scores to eliminate confounding, the authors recorded twenty-five key
variables in order to try to eliminate selection bias. The choice of vari-
ables for ensuring baseline comparability must predict treatment group
or outcome. It is ineffective to simply use variables which are easily
available but are not necessarily associated with group membership or
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outcome (such as gender). Therefore, in contrast to a well-conducted
RCT, a well-conducted quasi-experiment makes greater demands on the
researcher in terms of accurately measuring as many potential confounders
as possible. Although it is often helpful to obtain good measurements of
important covariates at the beginning of a trial, such as pre-test score, this
is not a prerequisite; we know that the random allocation process will
produce unbiased distribution of covariates between the groups. The
main reason for measuring baseline test scores, for example, is in order
to increase the power of the experiment, and guard against chance effects.
If pre-test measurement is difficult or impractical, we can address the
power issues by increasing the sample size. For those researchers wishing
to conduct a rigorous quasi-experiment the luxury of not measuring base-
line covariates is not possible. Quasi-experimenters may encounter prob-
lems with matching. In order to locate matched controls in a case control
study, researchers may need to use a different geographical area, which
can potentially introduce geographical confounds. Regression discontinu-
ity designs do not require as much detailed data collection as other quasi-
experiments, but they encounter other problems, including lack of power, as
larger sample sizes are required when using this design. In addition,
poor adherence to the cut-off point may threaten internal validity.
Quasi-experimenters are limited by all the problems also faced by trial-
ists. Loss to follow-up can potentially bias quasi-experiments, just as it
can true experiments. Similarly, blinded follow-up is important in a quasi-
experiment because ascertainment bias can as easily be introduced into a
quasi-experiment as it can in an RCT. Indeed, it could be argued that the
deterministic approach of allocating participants to a study in a quasi-
experiment could make it more difficult to blind the observer.

18.3 Ethical constraints

Participants taking part in RCTs sometimes do not benefit from partici-
pating in the study. Further, if they are randomised to receive a treat-
ment that ultimately proves to be hazardous then they are likely to be
more disadvantaged than if they had refused participation. The only
way of addressing this question, robustly, is to randomise potential par-
ticipants to be recruited or not recruited into a trial. Another approach,
which is more feasible, is to compare participants who are eligible for a
study but refuse trial enrolment. Hallstrom and colleagues (2003) under-
took such an observational study, and found that mortality was reduced
among trial participants compared with non-participants. This mortal-
ity benefit was even apparent among participants who received the
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active treatment in the CAST trial, which you may recall from Chapter 1
was a treatment that increased overall mortality. There are several explan-
ations for this phenomenon, not least the potential for selection bias — that
is, trial volunteers were healthier in some unmeasured way compared
with trial refusers. Other explanations include more diligent treatment
when participating in a trial due to the need to carefully audit trial par-
ticipants. Therefore, from an ethical standpoint, taking part in many
health care trials may be advantageous to the participant rather than the
opposite (there are clearly exceptions to this).

In some circumstances using an RCT is clearly impossible. For example,
it is clearly not possible to randomise people to take up smoking in order
to ascertain whether or not smoking increases morbidity. Indeed,
because the evidence for the harmful effects of smoking is not derived
from randomised trials, it has been claimed that the association between
smoking and harmful effects is possibly due to confounding (Fisher,
1958). The argument is as follows: smokers may, for example, be more
likely to have a genetic predisposition that makes them take up smok-
ing, which also puts them at increased risk of cancer; or smokers may
have a lifestyle (a poor diet, for example) that puts them at elevated risk.
Nevertheless we can ‘prove’ that smoking is harmful through the use of
an RCT, by, for example randomising smokers to receive or not receive a
smoking cessation programme. If the RCT demonstrates that the pro-
gramme is effective at reducing the prevalence of smoking then we can
follow both groups up to monitor the incidence of other outcomes.
Anthonisen and colleagues (2005) randomised 5900 smokers to either
a smoking cessation programme or to normal care to test if the enhanced
programme would enable smokers to quit in the longer term. After five
years 22 per cent of the intervention group had ceased smoking com-
pared with 6 per cent of the control group. Nevertheless, after fourteen
years there were significant differences between the groups in terms of
cardiovascular and cancer mortality. Consequently, we can be confident
that smokers who stop smoking enjoy a lower risk of adverse health
events.

An earlier trial confirmed observational data that pregnant women who
smoke are likely to give birth to babies with low birth weight. MacArthur
and colleagues (1987) randomised about 1000 pregnant smokers to receive
or not receive an anti-smoking health education package. In the inter-
vention group, 9 per cent stopped smoking compared with 6 per cent of
the control group, and 28 per cent of the intervention group reduced
tobacco consumption compared with 19 per cent of the control group.
This relatively small difference led to the women in the health education
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group having babies that were heavier and longer than babies in the
control group. Note that in this trial the majority of the mothers in the
intervention group remained smokers and the analysis was by intention
to treat, which would underestimate the truly harmful effects of smok-
ing on birth weight.

Observational data have shown that breast-fed babies have fewer
health problems than bottle-fed babies. These data could be con-
founded, like the observations on smoking, as women who breast-feed
are likely to be from a different socio-economic class than bottle-feeding
women, and the associated lifestyle factors and income levels may be
responsible for the differences in health outcomes. However, we can test
the benefits of breast-feeding in an RCT. As with the examples above, we
can take women from an area that has low breast-feeding rates and offer
education and support to encourage breast-feeding. Two studies in
Mexico and the Ukraine have done this (Morrow et al., 1999; Kramer
etal., 2001). In one study the rates of breast-feeding increased from 6 per
cent to 43 per cent, and in the other they increased from 12 per cent to
60 per cent. The infants from both groups were followed up, and the
children from the breast-fed group were less likely to develop eczema
and diarrhoea compared with children in the control group. Note, this
was an intention to treat analysis and the majority of the intervention
group used bottle-feeding. Again these data support the observational
studies that found breast-feeding is best for children.

These examples demonstrate that it is possible to use the RCT to indir-
ectly evaluate the impact of certain factors where it is unethical or
impractical to make a direct comparison.

18.4 Interventions that may be ineffective

Whilst RCTs are generally thought of as providing evidence for what
works, equally important is their role in providing evidence for what
does not work or what is harmful. Usually ineffective interventions use
up resources, therefore even ones that do no direct harm ‘crowd out’
alternative productive uses of resources. In Table 18.1, we present a sam-
ple of randomised trials that have demonstrated interventions are inef-
fective or harmful.

The table shows a range of interventions that affect large sections of
the population. For instance, many millions of women have used hor-
mone replacement therapy over the years. Synthetic phonics instruction
was introduced as the first method for teaching reading to all children
starting school in the UK during 2006 and 2007.
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Selected interventions which are ineffective, harmful or no

different to alternative interventions, as demonstrated by RCTs

Year, Study

Intervention

Outcome

2007, Bjelakovic et al.

2006, Shennan et al.

2004, CRASH trial
2002, WHI trial
2001, Achara et al.

2006, Torgerson et al.

2004, Rouse et al.

1978, Berg et al.

Systematic review of trials of
antioxidant supplements

(beta carotene, vitamin A & E).

Trial of antibiotics for
a symptomatic vaginal

infection for pregnant women.

Trial of high dose steroids for
head injured patients.

Trial of hormone replacement
therapy.

Systematic review of trials of
driver education.

Systematic review of trials of
synthetic versus analytic
phonics instruction.

Trial of computer supported
literacy teaching.

Social work support for
truants.

Increased mortality.

Increased risk of giving
premature birth.

Increased mortality at
one month.
Increased risk of stroke.

Increased risk of
accidents and deaths.
No difference detected
between the two
methods.

No additional benefit
detected.

Increases truancy and
juvenile crime.

18.5 An inconvenient truth

Even when a rigorous RCT has been completed, it is part of the human
condition to ignore unpalatable or unacceptable results. Kaptchuk (2003)
has described a range of interpretive biases that people use to explain
away inconvenient findings. For instance, if the findings from a trial,
irrespective of its quality, support a prior belief then its results are often
perceived as being more credible. However, if the results of a trial run
counter to existing belief systems they are sometimes doubted and the
reader tends to look more strenuously for methodological faults in the
study. Kaptchuk (2003) describes a randomised trial of evaluating two
‘fake’ trials being shown to trial participants, the only difference being
that one evaluated a credible treatment and the other evaluated a less
credible treatment. The results were believed more often in the trial with
a credible intervention than in the trial with the less credible treatment.
There are many examples of ‘real life’ trials that have shown an inter-
vention to be either harmful or ineffective and for researchers to disbe-
lieve their findings. It is important, however, to resist the impulse to
disbelieve the results of a well-conducted trial that gives results that are
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counter-intuitive. A historical example of this is the James Lind scurvy
experiment (www.jameslindlibrary.org/).

18.6 Role of theory in developing RCTs

When designing a trial there is often some well-defined theoretical ration-
ale for why an intervention may or may not be effective. The MRC frame-
work (2002) for designing ‘complex’ interventions describes an early
stage of trial development which includes a theoretical component. A
problem with over-reliance on theory to guide RCT development is that
the theory may simply be wrong. The use of HRT for the prevention of
stroke in women was based on incorrect biological theory, as was the
widespread use of vitamin supplements to improve health. Whilst virtu-
ally all interventions that are evaluated using a trial design are under-
pinned with some kind of theoretical basis, it is important to remember
that the most important issue is what works; the issue of why or how it
works is of less importance. We can be completely erroneous in the the-
oretical base and still identify the correct solution. For instance, typhus,
which is spread by body infestation, was originally believed to be caused
by filthy clothes and dirty bodies. Consequently, in the seventeenth and
eighteenth centuries the navy adopted a practice of removing and burning
the dirty clothes of new recruits, then hosing down the recruits, which
removed body infestation and reduced typhus (Rodger, 2005): the wrong
theory but the correct solution.

18.7 Concluding remarks

Health care research routinely uses randomised controlled trials to test the
effectiveness of interventions. Other areas of public policy, such as edu-
cation and criminal justice, have not capitalised on their earlier interest in
RCTs and now undertake few randomised studies, some of which are
poorly designed (Torgerson et al., 2005). However, many health care pro-
fessionals are still resistant to the wider usage of trials (e.g., Penston,
2007) or object to the use of trials in their specialist field because they claim
that they are either inappropriate or cannot be undertaken. For example,
an editorial in the British Medical Journal commenting on the fact that a
meta-analysis of controlled trials found no evidence that problem-based
learning in continuing medical education was more effective than didac-
tic teaching methods felt that the method, the RCT, was inappropriate for
its evaluation (Prideaux, 2002). Whilst some trials can be rightly criticised
as being too small or too badly designed to evaluate an intervention, it
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is not the method itself that is at fault, but rather the implementation of
the approach. The correct response to a null finding, based on a weak
study, is to undertake a robust RCT, whilst the correct response to a null
finding from a robust RCT is to reconsider the intervention.
Unfortunately, both health care research and social science research far
too often rely on the weakest evaluative method (the before and after
study) and place credence on observational data as opposed to randomised
trials. In all areas of the social sciences we need more randomised trials.
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active treatment analysis, see glossary,
28, 62-6, 145

allocation concealment, see glossary,
45-50

alternation, see glossary, 25-8

AMSTAR checklist, 170-2

analytical bias, 68-70

ascertainment (or reporting or
detection) bias, 57-8

attrition, see glossary, 51-4, 139-40

attrition bias, 51-4

baseline analysis, 138-40

before and after, see glossary, 9-16

bias, see glossary, 44-70

blinding, see glossary, 71-2

blocked randomisation, see glossary,
26, 32-5

Brewin-Bradley design, 81-90

CACE (complier average casual effect)
analysis, see ‘instrumental’
variable approach

case control study, see glossary, 186

ceiling effects, 147-8

chance imbalances, 61, 142

CLEAR - NPT checklist, 165-6

cluster randomised trials, 99-107, 137

cohort design, see comprehensive
cohort design

comprehensive cohort design, see
glossary, 88-90

confidence intervals, see glossary, 135-6

CONSORT checklist, see glossary, 164-5

cost ascertainment, 178-9

cost-effectiveness analysis, see
glossary, 180-1

cost-utility analysis, see glossary,
180-1

delay bias, 59-60
design bias, 163-4
detection bias, see ascertainment bias

dilution bias, see performance bias
discounting, 182

economic evaluation, 175-82
effect size, see glossary, 66
ethics, 186-8

exclusion bias, 67-8
explanatory trials, 76-86

factorial design, see glossary, 114-18
floor effects, 147-8

Hawthorne effects, 60

‘instrumental’ variable approach,
144-5

intention-to-treat (ITT) analysis, see
glossary, 61-7

interaction, 114, 116

intra-class correlation coefficient or
intra-cluster correlation coefficient
(ICC), 101, 133-5

matched randomisation, 35-6

minimisation, see glossary, 37-8

modelling, 182-3

multivariate analysis, see glossary,
141-3

numbers needed to treat or teach, see
glossary, 130-1

observational data or study, 185-6
outcome measurement, 147-51

paired randomisation, see matched
randomisation

pairwise randomisation, see glossary,
36-7

partial split-plot design, 105-6

participant or patient preference, see
glossary, 87-8

performance (or dilution) bias, 58-9
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per protocol analysis, see glossary,
62-7, 144

pilot study, see glossary, 119-26, 176-7

placebo trials, 71-5

post-test analysis, 141-3

power, see glossary, 34, 127-30

practical randomisation, 38-40

pragmatic trials, 76-86

pre- and post-test, see also before and
after, 9-16

preference trial, see participant
preference

pre-test analysis, 138-41

publication bias, 162-3

qualitative outcomes, 151

quasi-alternation, see glossary, 267

quasi-randomisation, see glossary,
25-8

QUOROM checklist, 165-70

random allocation, 2, 29-37
randomisation, 22, 28-37
see also minimisation, quasi-

randomisation, simple
randomisation, stratification

randomised controlled trial, see

glossary, 2
random sampling, see glossary, 3—4
recruitment (or consent) bias, 54-7

recruitment into trials, 152-9

regression discontinuity design, 9,
40-1, 96-8

regression to the mean, 10-16

resentful demoralisation, see glossary,
60-1

sabotage bias, see subversion bias

sample size, 120-1, 122-3, 127-35

sample size calculation, 132-5, 138

selection bias, see glossary, 22-4

sensitivity analysis, 181-2

sham trials, see placebo trials

simple randomisation, see glossary,
30-2

stratification, see glossary, 32-8

subversion (or sabotage) bias, 44-50,
139

surrogate outcomes, 148-50

systematic reviews, 160-74

technical bias, 30, 50-1
temporal changes, 10
theory, 190

Type I error, 60, 72, 121
Type II error, 128-9, 152

unequal randomisation, 108-13

Zelen’s method, see glossary, 93-6, 97



	Contents
	List of Figures, Boxes and Tables
	Preface
	Acknowledgements
	Glossary of Terms
	A
	B
	C
	E
	F
	I
	M
	N
	O
	P
	Q
	R
	S
	Z

	1 Background to Controlled Trials
	2 The Limitations of Before and After Designs
	3 History of Controlled Trials
	4 What is Special About Randomisation?
	5 Sources of Bias Within Randomised Trials
	6 Placebo and Sham Trials
	7 Pragmatic and Explanatory Trials
	8 Designs to Deal with Participant Preference
	9 Cluster Randomised Controlled Trials
	10 Unequal Randomisation
	11 Factorial Randomised Controlled Trials
	12 Pilot Randomised Controlled Trials
	13 Sample Size and Analytical Issues
	14 Measuring Outcomes
	15 Recruitment into Randomised Trials
	16 Systematic Reviews of Randomised Controlled Trials
	17 Economic Evaluation Alongside Randomised Trials
	18 Conclusions
	References
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	Z




